Fonctions usuelles exercices

Fonctions usuelles

Faire ses gammes

101 Dérivons

Soit $(a,b) \in (\mathbb{R}_+^*)^2$. Déterminer le domaine de définition, le domaine de dérivabilité et l'expression de la dérivée des fonctions suivantes.

(i)
$$x \mapsto e^{-\frac{a}{x^2}}$$

(ii)
$$x \mapsto x - a\sqrt{x}$$

(iii)
$$x \mapsto \left(1 + \frac{a}{r}\right)$$

(iv)
$$x \mapsto \sqrt{1 + \cos^2 x}$$

(v)
$$x \mapsto (ax + b)^x$$

(vi)
$$x \mapsto \frac{\cos(ax^2 + bx + 1)}{\sin(x)}$$

(vii)
$$x \mapsto \operatorname{Arctan}(e^x)$$

(viii)
$$x \mapsto \operatorname{Arcsin}(x^2 - 1)$$

(ix)
$$x \mapsto \operatorname{Arccos}\left(\frac{1}{1+x}\right)$$

(x)
$$x \mapsto \frac{\cos^3 x}{(1 - \cos x)^2}$$

102 Des équations

Résoudre dans $\mathbb R$ les équations et inéquations suivantes :

(i)
$$\ln\left(\frac{x+3}{2}\right) = \frac{\ln x + \ln 3}{2}$$

(ii)
$$3^{2x} - 2^{x + \frac{1}{2}} = 2^{x + \frac{7}{2}} - 3^{2x - 1}$$

(iii)
$$(\sqrt{x})^x = x^{\sqrt{x}}$$

(iv)
$$\ln |2x+1| + \ln |x+3| < \ln 3$$

103 Étude de fonctions

Étudier les fonctions suivantes (domaine de définition, parité, périodicité, variations et limites.)

(i)
$$x \longmapsto \frac{x^3}{x^2 - 3}$$

(ii)
$$x \longmapsto \ln(x-1) + \ln(x+1)$$

(iii)
$$x \longmapsto \ln(x^2 - 1)$$

(iv)
$$x \longmapsto \sqrt{\frac{\ln|x|}{x}}$$

(v)
$$x \longmapsto \frac{\tan(2x)}{\tan x}$$

(vi)
$$x \longmapsto x \operatorname{Arctan} \frac{1}{x}$$

(vii)
$$x \longmapsto \sin(3x) + 3\sin x$$

Fonctions exponentielles et puissances

104) Écriture d'un entier en base 2 —

Soit $p \in \mathbb{N}^*$ et

$$n = \sum_{i=0}^{p-1} a_i 2^i$$
 avec $a_{p-1} = 1$ et $\forall i \in [0, p-2], a_i \in \{0, 1\}.$

Montrer que $p = 1 + \lfloor \log_2(n) \rfloor$.

105 Des suites

Les questions sont indépendantes

- 1. Déterminer tous les couples d'entiers naturels distincts (n, p) non nuls tels que $n^p = p^n$.
- 2. Déterminer les entiers naturels $n \in \mathbb{N}$ tels que $2^n \ge n^2$.

106 Max

Déterminer, s'il existe, le maximum de $\{\sqrt[n]{n} \mid n \in \mathbb{N}^*\}$.

107 Exponentielle et Taylor =

Montrer que pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}^+$, on a $e^x \geqslant \sum_{k=0}^n \frac{x^k}{k!}$.

108 Encadrement de e

Montrer que pour tout $n \ge 2$, on a $\left(1 + \frac{1}{n}\right)^n \le e \le \left(1 - \frac{1}{n}\right)^{-n}$.

109 Du x en haut et en bas

- 1. Soient I un intervalle de \mathbb{R} et $u: I \to \mathbb{R}$ et $v: I \to \mathbb{R}$ deux applications. On suppose que u et v sont dérivables sur I et que u est strictement positive sur I. Montrer que u^v est dérivable sur I et calculer sa dérivée.
- 2. Étudier et tracer le graphe de l'application $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ définie par $f(x) = \begin{cases} x^x & \text{si } x > 0 \\ 1 & \text{si } x = 0. \end{cases}$ On précisera les éventuelles tangentes aux points d'abscisses 0 et 1.
- 3. Même question avec $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ $x \longmapsto \begin{cases} x^{\frac{1}{x}} & \text{si } x > 0 \\ 0 & \text{si } x = 0. \end{cases}$

110 Une inégalité

Montrer: $\forall x \in]0, 1[, x^x(1-x)^{1-x} \ge \frac{1}{2}.$

Étudier les variations de la fonction $x \mapsto x \ln x + (1-x) \ln(1-x)$.

Limites

111 Avec du log et de l'exponentielle

Déterminer les limites en $+\infty$ des fonctions suivantes :

(i)
$$x \mapsto \ln(x) - e^x$$

(iii)
$$x \mapsto \frac{\ln(1+e^x)}{\sqrt{x}}$$

(ii)
$$x \mapsto \frac{x^3}{\exp(\sqrt{x})}$$

(iv)
$$x \mapsto \frac{\exp(\sqrt{x})}{\sqrt{\exp(x)}}$$

112 Avec des fonctions puissances

(i)
$$\lim_{x \to +\infty} \frac{(x^x)^x}{x^{x^x}}$$

(iii)
$$\displaystyle \lim_{x \to +\infty} \frac{a^{b^x}}{b^{a^x}}$$
 où $1 < a < b$

(ii)
$$\lim_{x \to +\infty} \frac{a^{a^x}}{x^{x^a}}$$
 où $a > 1$

(v)
$$\lim_{x \to 0^+} x^{1/x}$$

(iv) $\lim_{x \to +\infty} x^{1/x}$

Fonctions trigonométriques circulaires

113 Graphe

Soit $f: x \mapsto \operatorname{Arctan}(\tan x)$.

- 1. Déterminer le domaine de définition de f.
- 2. Montrer que f est périodique.
- 3. Montrer que C_f admet l'origine comme centre de symétrie.
- 4. Tracer C_f .

114 Avec Arctan

1. Soit $k \in \mathbb{N}$. Simplifier Arctan(k+1) - Arctan(k).

On pourra calculer la tangente de cette expression.

2. En déduire la valeur de $\lim_{n\to+\infty} \left(\sum_{k=0}^n \operatorname{Arctan} \left(\frac{1}{k^2+k+1} \right) \right)$.

115 Cosinus et Arctan

Soit $x \in \mathbb{R}$.

Montrer que $\cos(\operatorname{Arctan} x) = \frac{1}{\sqrt{1+x^2}}$.

En déduire une formule analogue pour $\sin(\operatorname{Arctan} x)$.

116 Avec Arctan

- 1. Montrer que $\forall t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}, \frac{1-\cos t}{\sin t} = \tan(t/2).$
- 2. Simplifier Arctan $\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ pour $x \in \mathbb{R}^*$.

117 Des identités $_$

- 1. Montrer que pour tout $x \in [-1, 1]$, $Arcsin x + Arccos x = \frac{\pi}{2}$.
- 2. Montrer que pour tout $x \in]-1,1[$, $\arctan \sqrt{\frac{1-x}{1+x}} = \frac{1}{2} \arccos x$.

118 Avec Arcsin

Ensemble de définition et simplification de f définie par $f(x) = Arcsin(2x\sqrt{1-x^2})$.

119 Équations

Résoudre les équations

- 1. $\operatorname{Arctan}(x-1) + \operatorname{Arctan}(x+1) = \pi/2$;
- 2. Arcsin $\left(\frac{2x}{1+x^2}\right) = 2 \operatorname{Arctan} x$.

120 Formule d'Euler et Formule de Machin

- 1. Montrer la relation : $\frac{\pi}{4} = \arctan \frac{1}{2} + \arctan \frac{1}{3}$ (formule due à Euler).
- Montrer la formule de Machin : π/4 = 4 Arctan 1/5 Arctan 1/239.
 (Cette formule permit à John Machin (1680-1752) de déterminer en 1706 les 100 premières décimales exactes de π).

121 Encore une formule _

Établir $\frac{\pi}{4} = 5 \operatorname{Arctan} \frac{1}{7} + 2 \operatorname{Arctan} \frac{3}{79}$

Fonctions trigonométriques hyperboliques

122 Formules d'addition des fonctions hyperboliques

Soient x et y deux réels. Montrer les formules suivantes :

- 1. $\operatorname{sh}(x+y) = \operatorname{sh} x \operatorname{ch} y + \operatorname{ch} x \operatorname{sh} y \operatorname{et} \operatorname{sh}(2x) = 2 \operatorname{sh} x \operatorname{ch} x$;
- 2. $\operatorname{ch}(x+y) = \operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y$ et $\operatorname{ch}(2x) = \operatorname{sh}^2 x + \operatorname{ch}^2 x$.

123 Une espèce de formule de Moivre

Rappeler la formule de Moivre chez les nombres complexes.

Montrer: $\forall p \in \mathbb{Z}, \forall x \in \mathbb{R}, (\operatorname{ch} x + \operatorname{sh} x)^p = \operatorname{ch}(px) + \operatorname{sh}(px).$

124 Duplication

Soient $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$.

En utilisant la formule de duplication du sinus hyperbolique, simplifier $2^n \prod_{k=1}^n \operatorname{ch}\left(\frac{x}{2^k}\right)$.

125 Une équation

Soit $(a,b) \in \mathbb{R}^2$. Résoudre dans \mathbb{R} l'équation $a \operatorname{ch} x + b \operatorname{sh} x = 0$.

126 Sommes

Soient $n \in \mathbb{N}^*$ et $(x, y) \in \mathbb{R}^2$.

Calculer $\sum_{k=0}^{n} \operatorname{ch}(kx+y)$, $\sum_{k=0}^{n} \operatorname{sh}(kx+y)$ et $\sum_{k=0}^{n} k \operatorname{sh}(kx)$.

127 Fonctions hyperboliques réciproques .

- 1. Pour tout $y \in \mathbb{R}$, résoudre l'équation $y = \operatorname{sh} x$ d'inconnue $x \in \mathbb{R}$. Qu'en déduit-on?
- 2. Même question avec la fonction ch.

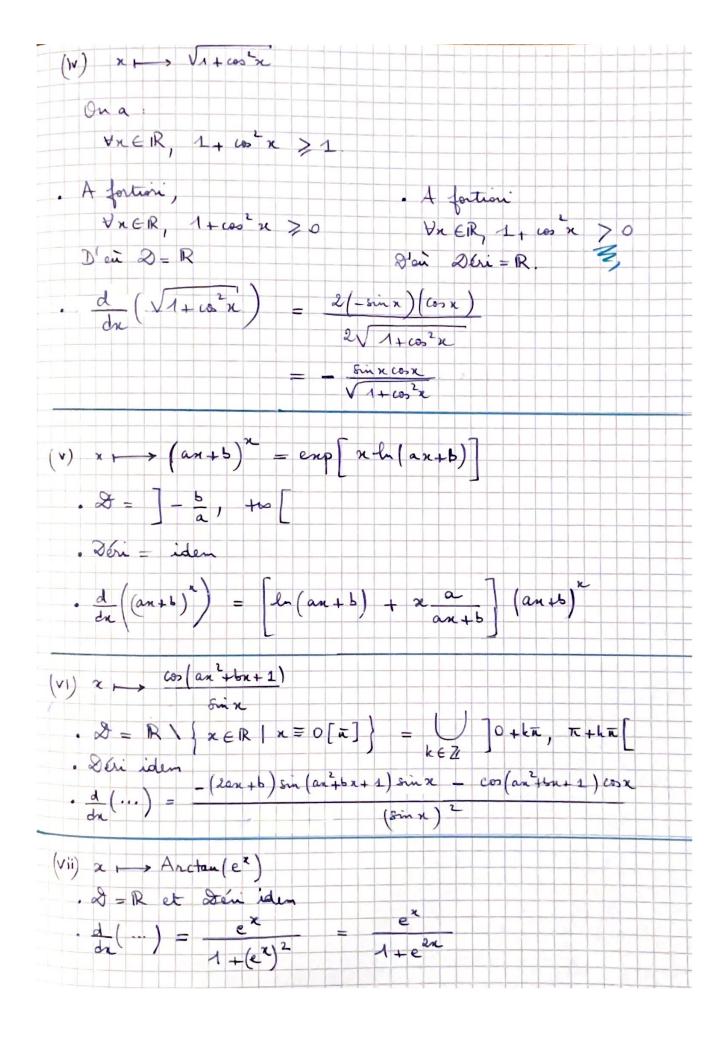
128 La fonction tangente hyperbolique

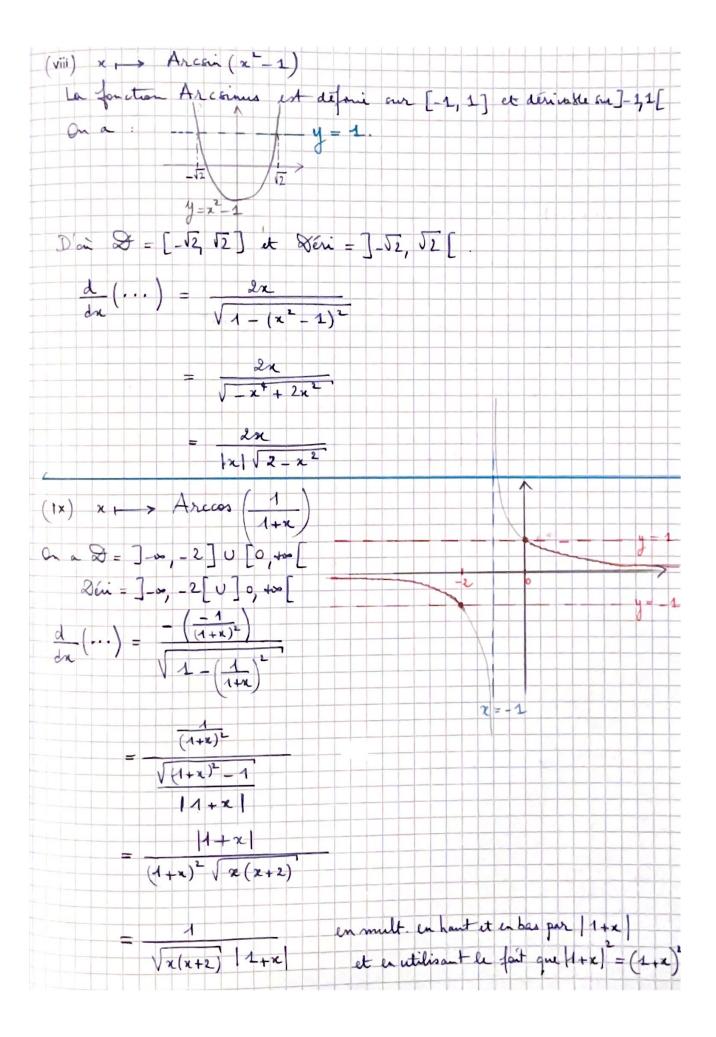
On appelle tangente hyperbolique et on note th la fonction $\frac{\mathrm{sh}}{\mathrm{ch}}$.

- 1. Étudier la fonction the tracer son graphe.
- 2. Montrer que pour tout $(x,y) \in \mathbb{R}^2$, on a $\operatorname{th}(x+y) = \frac{\operatorname{th} x + \operatorname{th} y}{1 + \operatorname{th} x \operatorname{th} y}$ et $\operatorname{th}(2x) = \frac{2 \operatorname{th} x}{1 + \operatorname{th}^2 x}$.
- 3. Montrer que pour tout $x \in \mathbb{R}$ et tout $n \geqslant 1$, on a $\left(\frac{1 + \operatorname{th} x}{1 \operatorname{th} x}\right)^n = \frac{1 + \operatorname{th}(nx)}{1 \operatorname{th}(nx)}$.
- 4. Montrer que th est injective sur \mathbb{R} , donc bijective de \mathbb{R} dans son image. Déterminer une expression de sa réciproque, notée Argth.

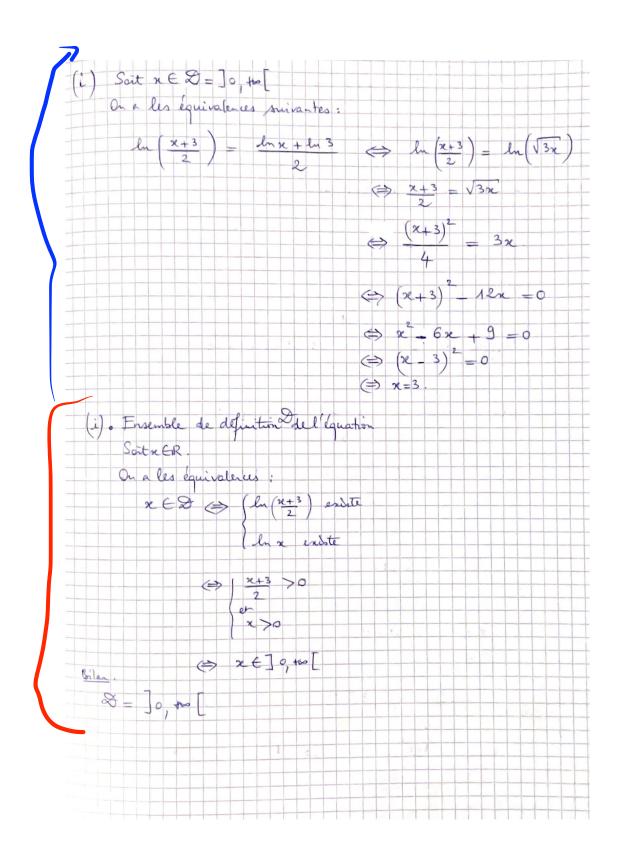
Fonctions usuelles corrigés

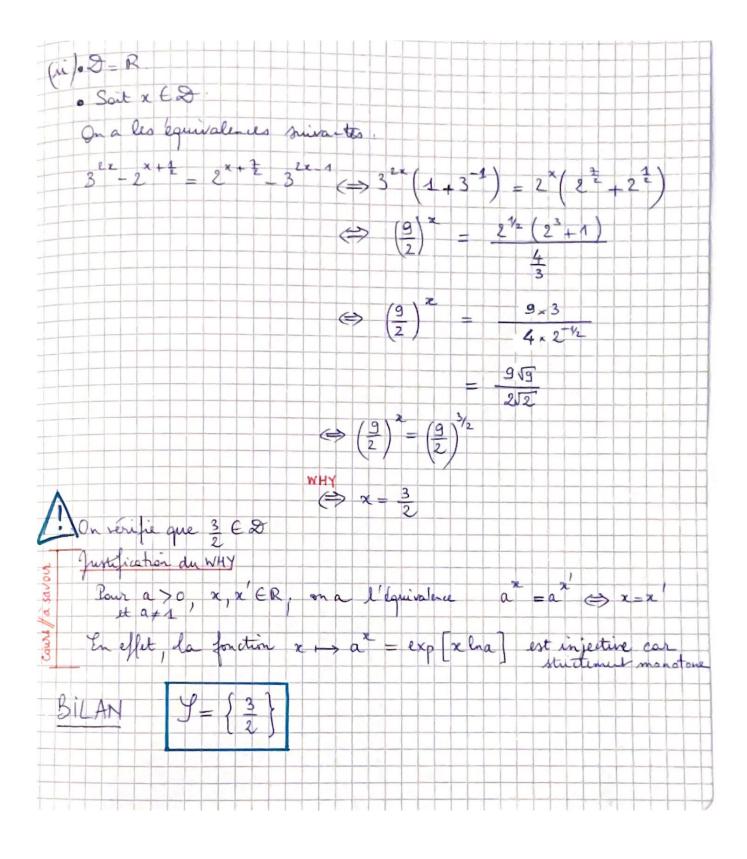
(i) $\times \mapsto e^{-\frac{a}{\mu}}$
2 = R*.
$26i = \mathbb{R}^*$
$\frac{d}{dx}\left(e^{-\frac{a}{x^{2}}}\right) = (-\alpha)(-2) \times e^{-\frac{a}{x^{2}}}$
= 2a e x = x = x = x = x = x = x = x = x = x
(ii) $x \mapsto x - a\sqrt{x}$
34 = Rt et Séri = Jo, to-I
$\frac{d}{dx}\left(x-a\sqrt{x}\right) = 1 - \frac{a}{2\sqrt{x}}$
$(iii) x \mapsto (1 + \frac{a}{x})^{x} = \exp\left[x \ln(1 + \frac{a}{x})\right]$
on résont l'inéquation 1 + a > 0 (le réfrécem jornible
Cela equivant à charcher les x to 1 2 au granillon ex vous faites
(rapel: a est sonici)
Petit devoir efficace:
BILAN:
Déf =]-0, -a U O, two
· Déri = idem que Déf
$\frac{d}{dx}\left(1+\frac{a}{x}\right)^{x} = \left[1 \cdot \ln\left(1+\frac{a}{x}\right) + 2 \cdot \frac{1}{x} - \exp\left[x \ln\left(1+\frac{a}{x}\right)\right]\right]$
$= \left[\ln\left(1+\frac{a}{x}\right)+\frac{-a}{x+a}\left(1+\frac{a}{x}\right)\right]$

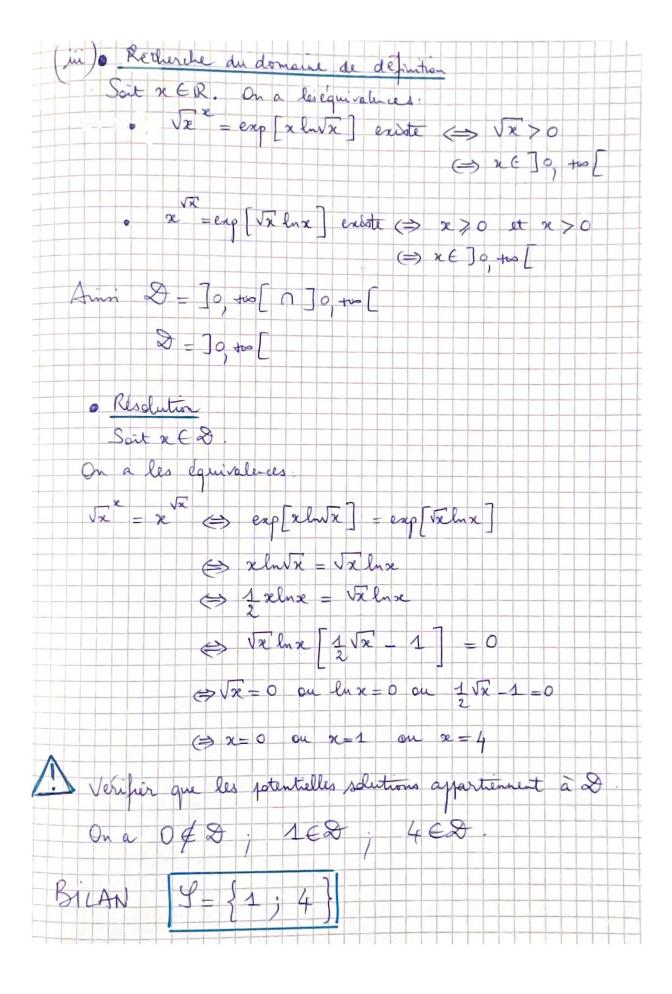


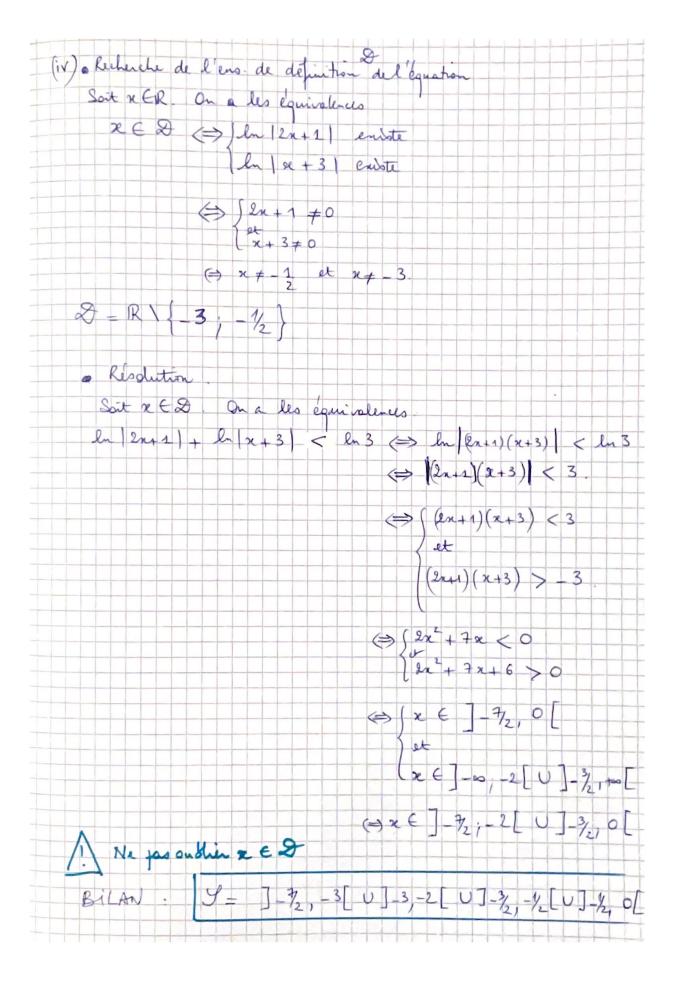


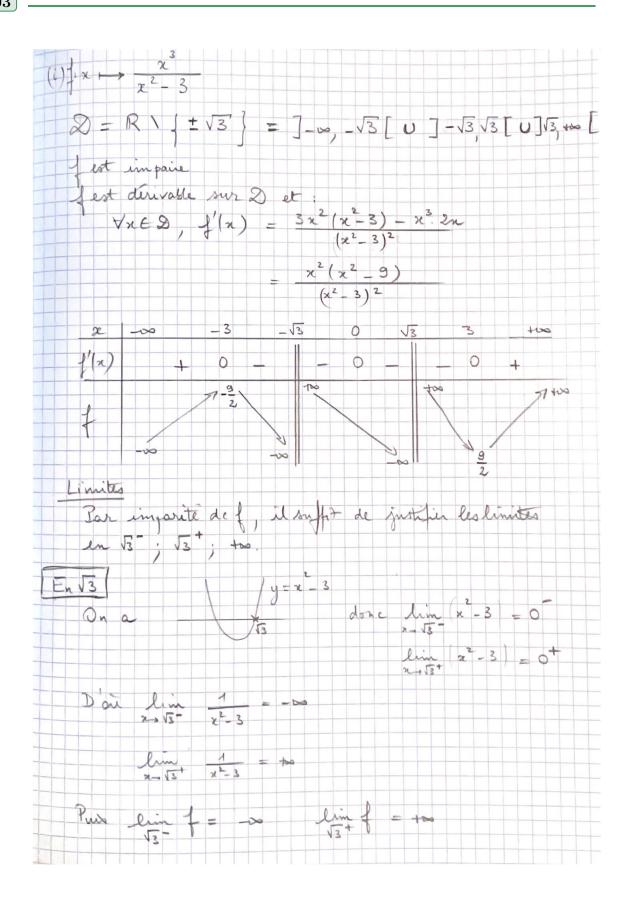
 $\mathcal{S} = \mathbb{R} \setminus \left\{ x \in \mathbb{R} \mid x = 0 \left[2\pi \right] \right\} = \bigcup_{k \in \mathbb{Z}} \left[0 + 2k\pi, 2\pi + 2k\pi \right]$ $\mathcal{S}_{\text{exi}} = idem = \bigcup_{k \in \mathbb{Z}} \left[2k\pi, 2(k+1)\pi \right]$ $\frac{d}{dx}\left(\dots\right) = \frac{d}{dx}\left(\cos^3x \cdot \left(1 - \cos x\right)^{-2}\right)$ $= 3(-\sin x)(\cos^2 x)(1-\cos x)^{-2}+\cos^3 x(-2)(\sin x)(1-\cos x)$ = - sin x. cos x. (1-cos x) -3 [3 (1-cos x) + 2 cos x] - Sm x . cos z [3 - cos x] Sin x. (cos x. 3)



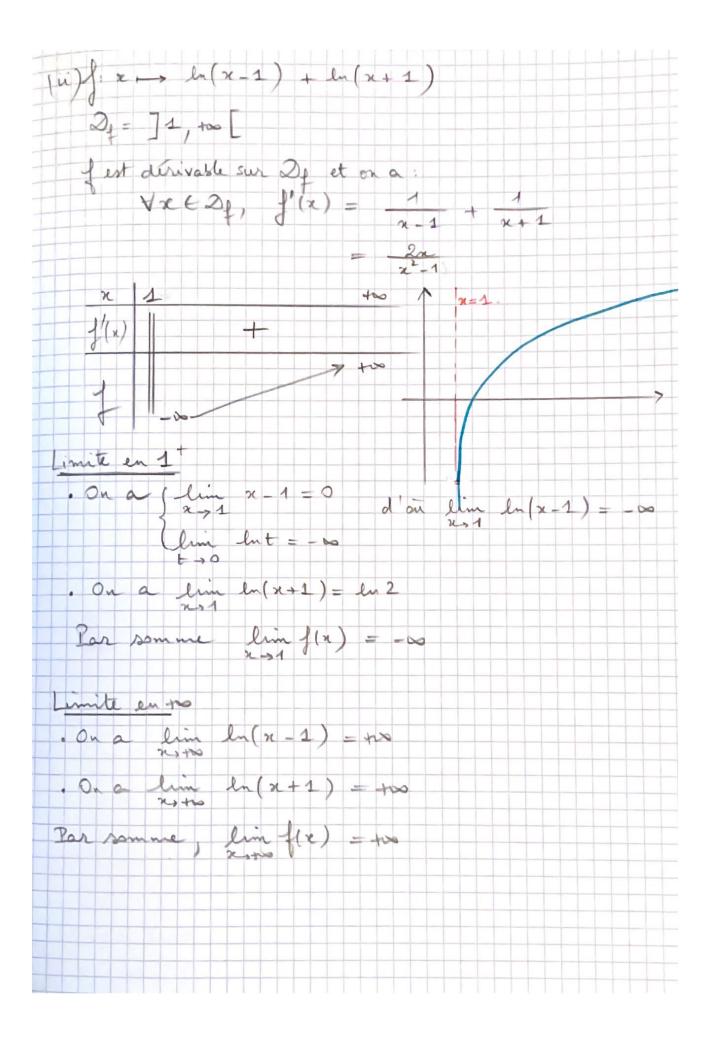


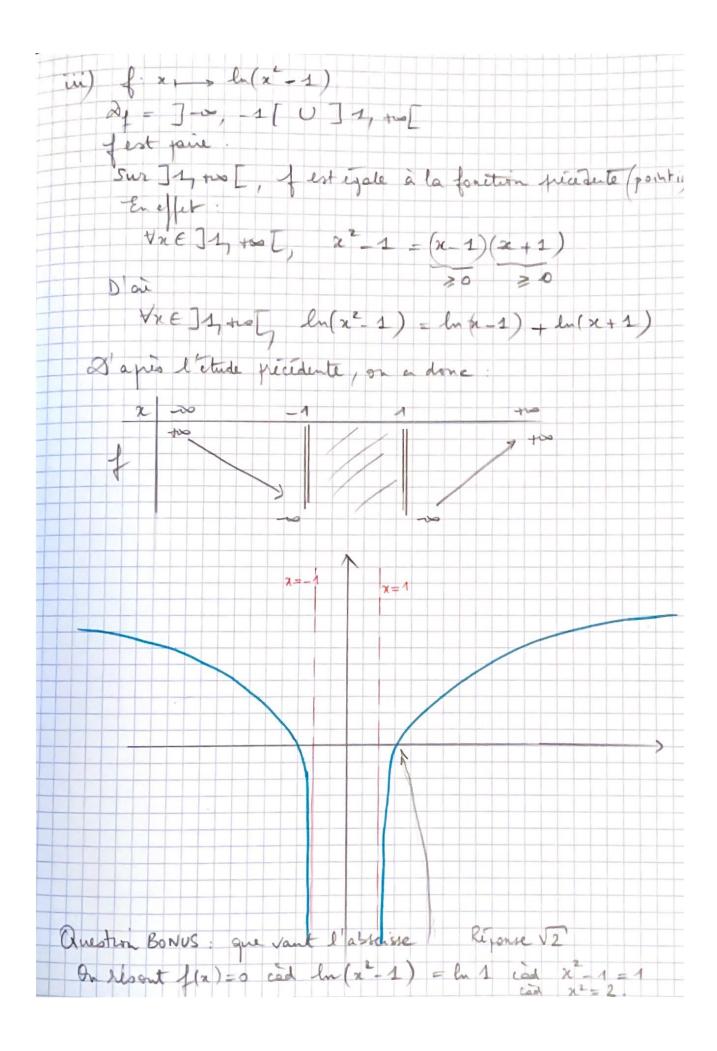


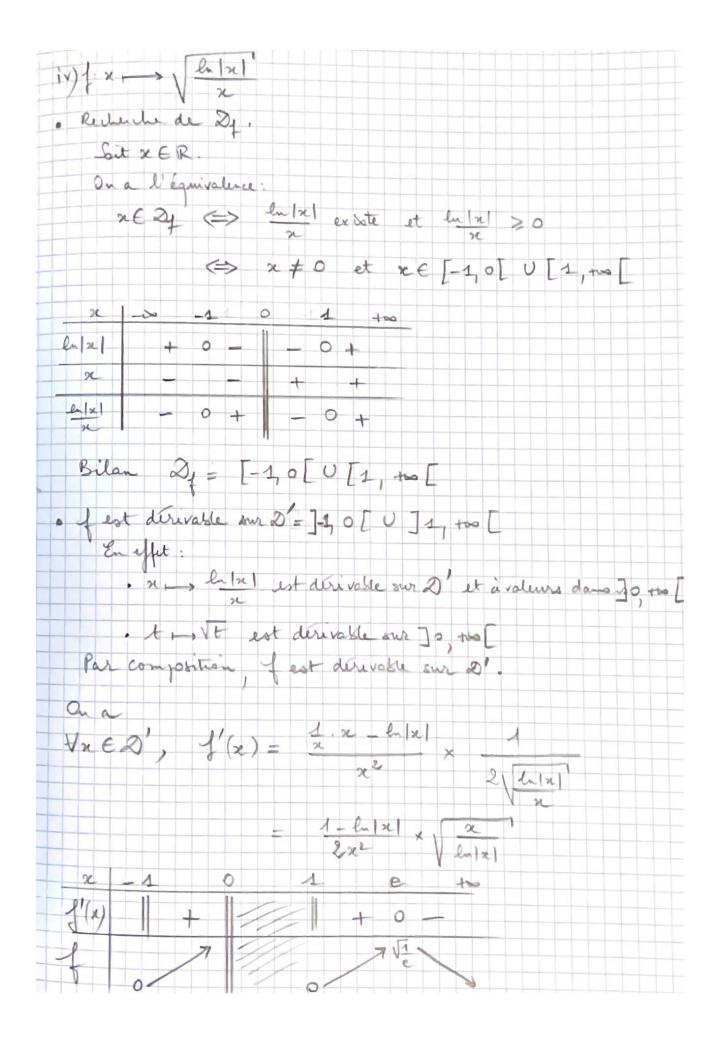




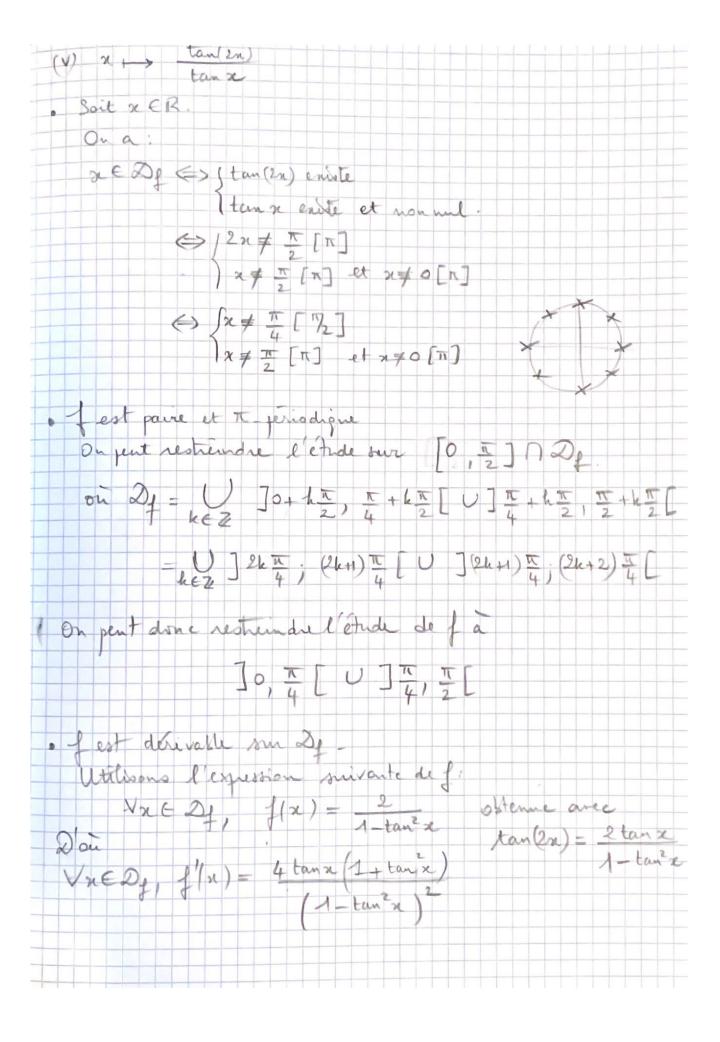
En to Ona $f(x) = \frac{x^3}{x^2 - 3} = \frac{x^3}{x^2} = \frac{x}{x^2}$ On a lim x = too lim 1 - 3 = 1 Par quotient, on a line f(x) = +00 Bonus Montrons que Ce admit une asymptote delique entre $\lim_{x \to \infty} \frac{1}{2}(x) - x = \frac{x^3}{x^2 - 3} - x$ Ainsi la droite d'aquation in



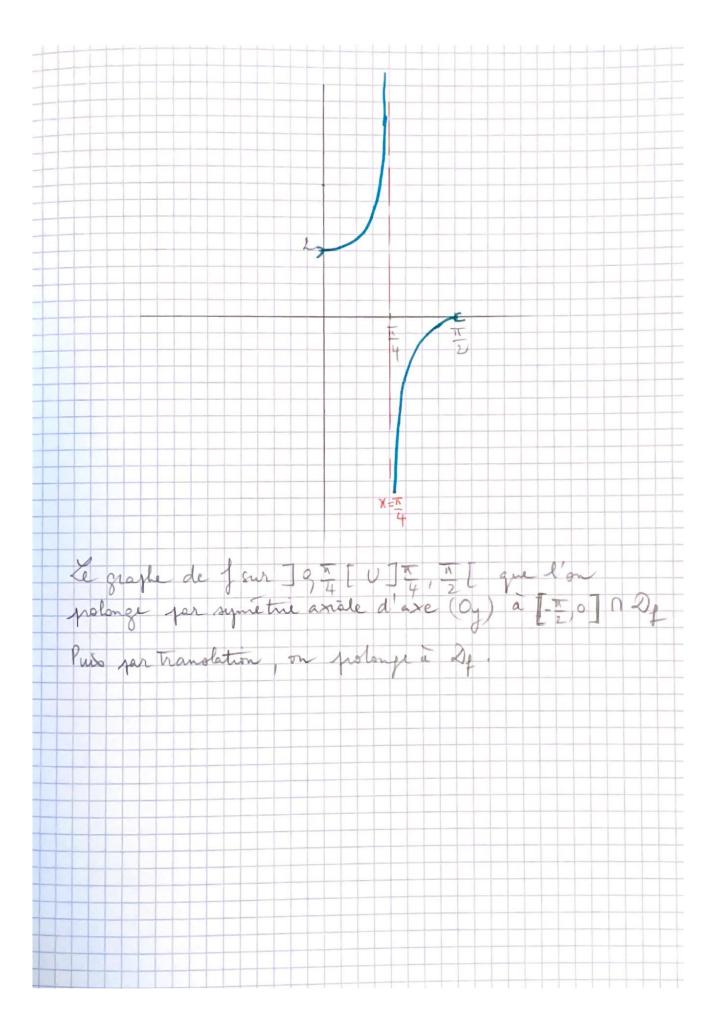


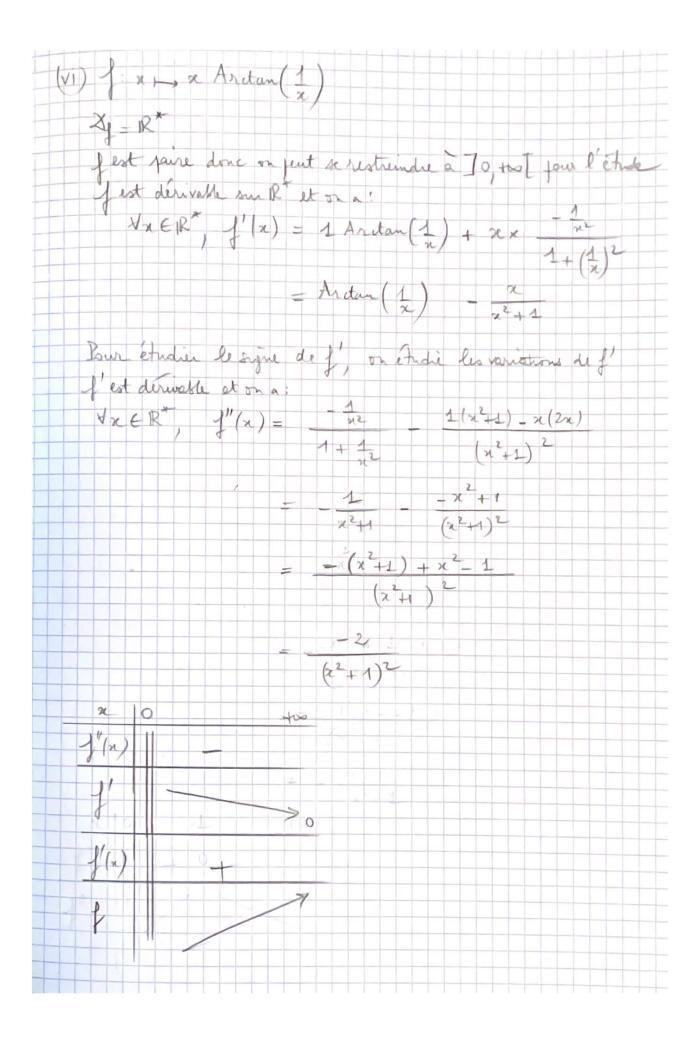


Ou a lim lu |x | = - so Par poduit lin $|h|x| = +\infty$ D'an line $f(x) = +\infty$ limite en 100 On a lime lutal - 0 par craiss d'an lim f(x) =0 Bonus On a lin f(x) = +00 On serra + tand que ala temoigne d'une tangente verticale en 1. V1 20,6

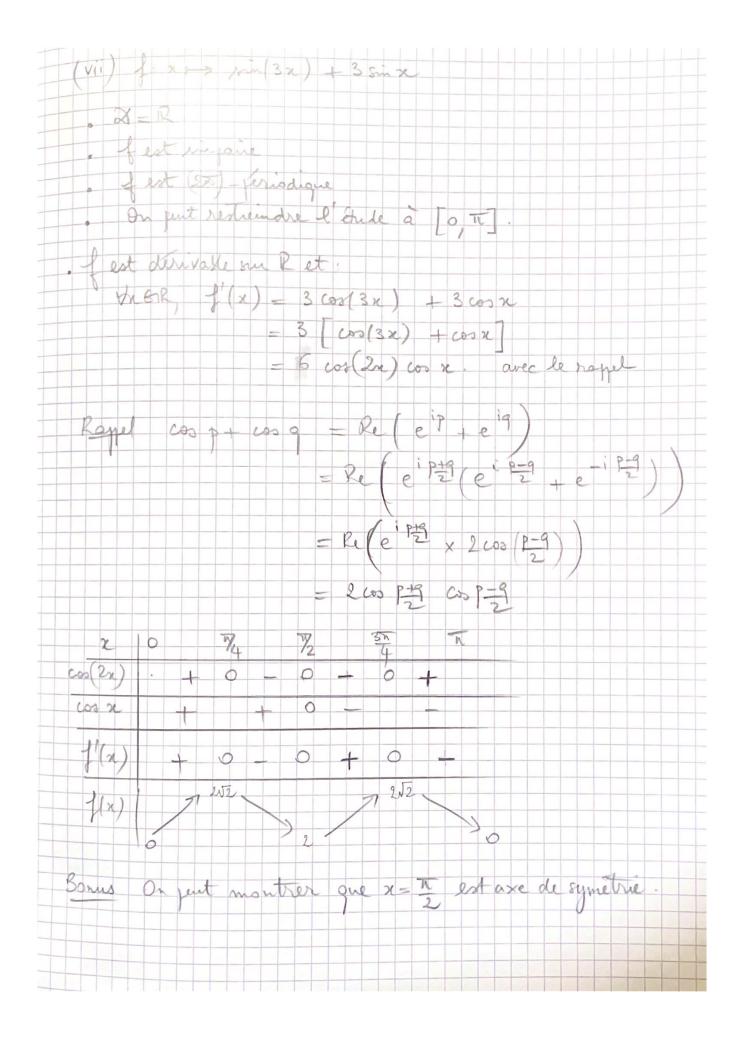


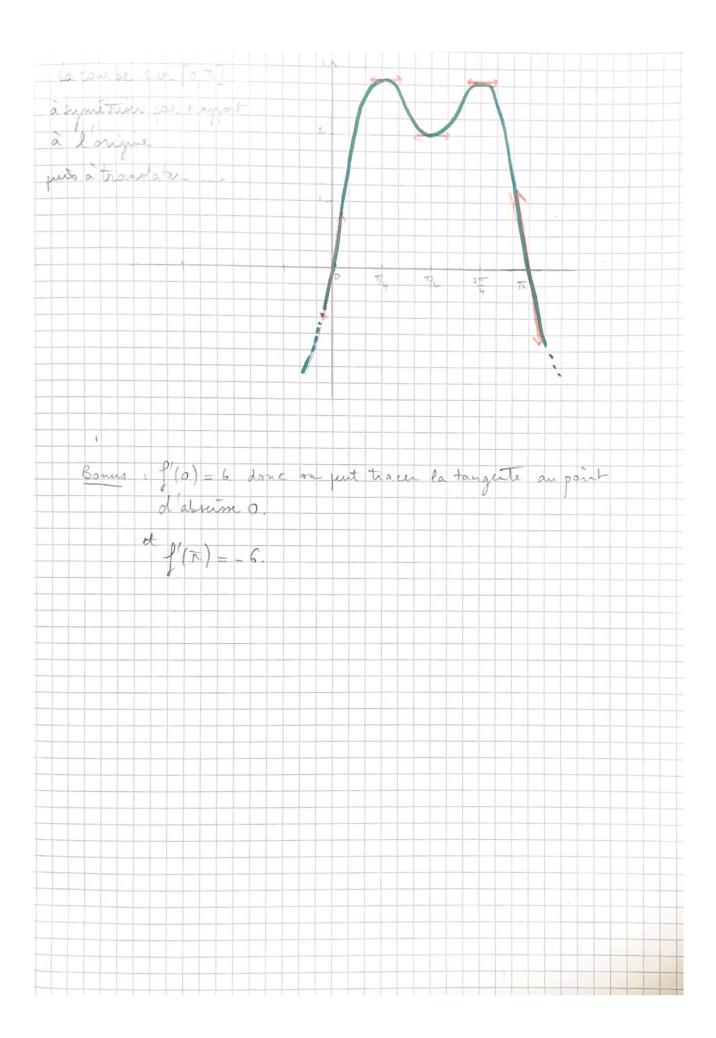
D'air le tableau sur Jo, 4 [U] 4/2[1/(2) Eno a f(x) - 2 tan(2x) tanx On a line tem z - 1 Dagnotient, pur produit, lim f(x) = 2 En 1/4 d'où lin tan(2x) = +00 et lim tanz = 1 Parquetient lim f(x) = +00 En X - On a lim tar(2n) - O (WHY)) par paduit





d'an lim Ardar (1) lin Aretunt = 7/2 Par produit lim x Arotan (1) = 0 inite en 100 Ardar (1 (x) d'ai lin f(x) = 1 lin Arctant = 1 Bonus jour tracer le graphe au voisinage de On jent montrer (faite le) que lim f (x) = 7/2 On appendra + tand que cela implane la présence d'une tangente en 0 de coeff dir





— Commençons par prouver que $\tan \left(5 \operatorname{Arctan} \frac{1}{7} + 2 \operatorname{Arctan} \frac{3}{79} \right) = 1$. La formule de Moivre permet d'obtenir :

$$\tan 5t = \frac{\sin 5t}{\cos 5t} = \frac{5\tan t - 10\tan t^3 + \tan t^5}{1 - 10\tan t^2 + 5\tan t^4}$$

En remplaçant t par $\operatorname{Arctan}(1/7)$, on obtient $\tan(5 \operatorname{Arctan} \frac{1}{7}) = \frac{2879}{3353}$. On trouve de même $\tan(2 \operatorname{Arctan} \frac{3}{79}) = \frac{237}{3116}$. En utilisant la formule d'addition donnant $\tan(a+1)$ b), on en déduit que :

$$\tan\left(5\arctan\frac{1}{7} + 2\arctan\frac{3}{79}\right) = \frac{\frac{2879}{3353} + \frac{237}{3116}}{1 - \frac{2879}{3353} \frac{237}{3116}} = 1.$$

— Vérifions maintenant $0 \leqslant 5 \operatorname{Arctan} \frac{1}{7} + 2 \operatorname{Arctan} \frac{3}{79} < \frac{3\pi}{4}$. C'est une conséquence de :

$$0\leqslant \arctan\frac{3}{79}\leqslant \arctan\frac{1}{7}\leqslant \arctan\frac{1}{\sqrt{3}}=\frac{\pi}{6}$$

et de:

$$0\leqslant 5 \arctan\frac{1}{7} + 2 \arctan\frac{3}{79} \leqslant \!\! \frac{7\,\pi}{6} < \frac{3\,\pi}{4} \cdot$$

On en déduit alors l'égalité demandée.