- 1. La fonction f_n est continue (en tant que fonction polynomiale)
 - On a $f_n(0) = -1$ et $\lim_{n \to \infty} f_n = +\infty$, donc 0 est une valeur intermédiaire entre $f_n(0)$ et $\lim_{n \to \infty} f_n$.

Avec ces deux points et le théorème des valeurs intermédiaires, on en déduit qu'il **existe** un zéro dans $[0, +\infty[$ pour la fonction f_n .

— De plus, f_n est strictement croissante (en tant que somme de fonctions strictement croissantes et d'une fonction constante égale à -1).

Cette stricte monotonie prouve l'unicité du zéro.

Bilan : on a montré qu'il **existe un unique** $u_n \in \mathbb{R}^+$ tel que $f_n(u_n) = 0$.

- 2. > On a $f_1: x \mapsto x-1$. L'unique zéro de f_1 est 1, donc $u_1=1$.
 - ightharpoonup Montrons que $\forall n \geqslant 2, u_n \in]0,1[$.

Soit $n \ge 2$. Pour bien comprendre la situation, voici ce que nous avons à notre disposition :

x	0	u_n	$+\infty$
Variations de f_n	-1 -	0	+∞

Petit zoom sur [0,1] (on a n-1>0, WHY?)

x	0	u_n	1
Variations de f_n	-1		n-1

Écrivons ce que nous voyons. On a

$$-1 < 0 < n-1$$

ce qui s'écrit encore

$$f_n(0) < f_n(u_n) < f_n(1)$$

Par croissance (la stricte croissance n'est pas utile ici), on en déduit $0 < u_n < 1$ (en effet, si on avait $0 \ge u_n$, on aurait par croissance de f_n , l'inégalité $f_n(0) \ge f_n(u_n)$, ce qui n'est pas ; idem pour si on avait $u_n \ge 1$, etc.)

Si on avait eu la question suivante : montrer que $u_n \in [0,1]$, voilà ce que nous aurions écrit.

On a

$$-1 \leqslant 0 \leqslant n-1$$

ce qui s'écrit encore

$$f_n(0) \leqslant f_n(u_n) \leqslant f_n(1)$$

Par stricte croissance (la stricte croissance est utile ici), on en déduit $0 \le u_n \le 1$ (en effet, si on avait $0 > u_n$, on aurait par stricte croissance de f_n , l'inégalité $f_n(0) > f_n(u_n)$, ce qui n'est pas; idem pour si on avait $u_n > 1$, etc.)

3. • Étudions la monotonie de u.

Fixons $n \in \mathbb{N}^*$.

Deux solutions possibles : étudier $f_n(u_{n+1})$ ou $f_{n+1}(u_n)$. Je rédige la seconde solution.

à retenir: Pour comparer u_n et u_{n+1} , on va comparer leur image par f_{n+1} qui est strictement croissante.

 \triangleright Pour commencer, on cherche une relation entre f_{n+1} et f_n .

On a $f_n: x \mapsto x^n + x^{n-1} + \dots + x - 1$, donc

$$\forall x, \qquad f_{n+1}(x) = x^{n+1} + f_n(x)$$

 \triangleright On évalue la relation précédente en u_n , en utilisant que $f_n(u_n)=0$.

On obtient

$$f_{n+1}(u_n) = u_n^{n+1} + 0$$

 \triangleright Cherchons à comparer $f_{n+1}(u_n)$ et $f_{n+1}(u_{n+1})$, autrement dit à comparer u_n^{n+1} et 0.

D'après la question précédente, on a $u_n \ge 0$, d'où $u_n^{n+1} \ge 0$, ce qui s'écrit encore $f_{n+1}(u_n) \ge f_{n+1}(u_{n+1})$.

Comme f_{n+1} est strictement croissante, on en déduit $u_n \geqslant u_{n+1}$ (en effet, si on avait $u_n < u_{n+1}$, on aurait, par stricte croissance de f_{n+1} , l'inégalité $f_{n+1}(u_n) < f_{n+1}(u_{n+1})$, ce qui n'est pas).

Bilan : la suite u est décroissante.

- \bullet La suite u est décroissante et minorée (par 0), donc d'après le théorème de la limite monotone, elle converge.
- 4. ** D'après la question précédente, la suite u converge vers un certain $\ell \in \mathbb{R}$ que l'on cherche à déterminer.

Pour cela, commençons par montrer que $\lim u_n^n$ existe.

On a

$$\forall x \neq 1, \qquad f_n(x) = x \frac{1 - x^n}{1 - x} - 1$$

Comme $u_n \neq 1$ pour $n \geq 2$, on a, en prenant $x = u_n$:

$$\forall n \geqslant 2, \quad 0 = u_n \frac{1 - u_n^n}{1 - u_n} - 1$$

On a envie de passer à la limite dans cette égalité; ce n'est pas encore licite, car on ne sait pas si $\lim u_n^n$ existe.

Prouvons-le.

On a (WHY?)

$$\forall n \geqslant 2, \qquad 0 \leqslant u_n^n \leqslant u_2^n$$

Or $u_2 \in]-1, 1[$, donc $u_2^n \to 0$.

D'après le théorème des Gendarmes, on en déduit que $u_n^n \to 0$.

Reprenons ce que l'on voulait faire, qui est maintenant licite. On obtient (car $1 - \ell \neq 0$, why?):

$$0 = \ell \frac{1 - 0}{1 - \ell} - 1$$

En résolvant cette équation d'inconnue ℓ , on trouve $\ell = \frac{1}{2}$.

1. On procède par récurrence. Pour tout $n \in \mathbb{N}$, notons \mathcal{H}_n :

$$1 < x_n < y_n$$

- \mathcal{H}_0 est vraie : c'est immédiat d'après l'énoncé.
- Soit $n \in \mathbb{N}$ tel que \mathcal{H}_n est vraie. Montrons \mathcal{H}_{n+1} .

D'après \mathcal{H}_n , on a $x_n > 1$ et $y_n > 1$.

* On a donc
$$x_{n+1} = \frac{1}{2} \left(\underbrace{x_n}_{\geq 1} + \underbrace{\sqrt{y_n}}_{1} \right) > 1$$

⋆ On a

$$y_{n+1} - x_{n+1} = \frac{1}{2} \left((y_n - x_n) - (\sqrt{y_n} - \sqrt{x_n}) \right) = \frac{1}{2} \left(\underbrace{\sqrt{y_n} - \sqrt{x_n}}_{>0 \text{ cf.} \mathcal{H}_n} \right) \left(\underbrace{(\sqrt{y_n} + \sqrt{x_n}) - 1}_{>1 \text{ cf.} \mathcal{H}_n} \right) > 0$$

Autre solution.

Remarquer que $t \mapsto t - \sqrt{t}$ est strictement croissante sur $\left[\frac{1}{4}, +\infty\right[$, donc sur $]1, +\infty\left[$.

D'après \mathcal{H}_n , on a $1 < x_n < y_n$. Donc par stricte croissante, on a $x_n - \sqrt{x_n} < y_n - \sqrt{y_n}$. Et ainsi, $y_{n+1} - x_{n+1} > 0$.

BILAN : $1 < x_{n+1} < y_{n+1}$, donc \mathcal{H}_{n+1} est vraie.

• D'après le principe de récurrence, \mathcal{H}_n est vraie pour tout $n \in \mathbb{N}$.

2. Soit $n \in \mathbb{N}$. On a

$$y_{n+1} - y_n = \frac{1}{2}(\sqrt{x_n} - y_n)$$

Comme
$$1 < x_n,$$
 on a $\sqrt{x_n} < x_n.$ On a aussi $x_n < y_n.$

On a mq: $\forall n \in \mathbb{N}, y_{n+1} - y_n < 0$, donc (y_n) est strictement décroissante.

3. La suite y est décroissante et minorée par 1.

D'après le théorème de la limite monotone, la suite y converge.

- 4. Pour tout n, on a $\sqrt{x_n} = 2y_{n+1} y_n$. La suite $(y_n)_{n\geqslant 0}$ converge (donc la suite $(y_{n+1})_{n\geqslant 0}$) aussi!). En tant que différence de deux suites convergentes, la suite $(\sqrt{x_n})_{n\geqslant 0}$ converge. Donc la suite (x_n) converge, par continuité de la fonction carré.
- 5. Les suites (x_n) et (y_n) convergent. On peut donc passer à la limite dans :

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = \frac{1}{2}(x_n + \sqrt{y_n}) \\ y_{n+1} = \frac{1}{2}(y_n + \sqrt{x_n}) \end{cases}$$

On obtient:

$$\left\{ \begin{array}{l} \ell_x = \frac{1}{2}(\ell_x + \sqrt{\ell_y}) \\ \ell_y = \frac{1}{2}(\ell_y + \sqrt{\ell_x}) \end{array} \right. \text{d'où} \left\{ \begin{array}{l} \ell_x = \sqrt{\ell_y} \\ \ell_y = \sqrt{\ell_x} \end{array} \right.$$

6. Reprenons le résultat de la question précédente.

$$\left\{ \begin{array}{l} \ell_x = \sqrt{\ell_y} \\ \\ \ell_y = \sqrt{\ell_x} \end{array} \right. \text{d'où} \ \left\{ \begin{array}{l} \ell_x^2 = \ell_y \\ \\ \ell_y^2 = \ell_x \end{array} \right. \text{d'où} \ \left\{ \begin{array}{l} \ell_x^4 = \ell_x \\ \\ \ell_y^4 = \ell_y \end{array} \right.$$

Rappel: l'équation $t^4 = t$ a deux solutions dans \mathbb{R} , qui sont 1 et 0 (preuve?).

Pour tout n, on a $1 < x_n < y_n$.

Donc par passage à la limite dans les inégalités larges, on obtient $1 \leq \ell_x \leq \ell_y$.

Bilan : $\ell_x = 1$ et $\ell_y = 1$

Autre solution (très similaire).

On a
$$\ell_y = \sqrt{\ell_x}$$
.

En passant à la limite dans $1 < x_n < y_n$, on obtient alors $1 \le \ell_x \le \sqrt{\ell_x}$,

donc $1 \leqslant \sqrt{\ell_x} \leqslant \ell_x \leqslant \sqrt{\ell_x}$. Donc $\ell_x = \sqrt{\ell_x}$. Donc $\ell_x \in \{0; 1\}$.

Comme $1 \leqslant \ell_x$, on a forcément $\ell_x = 1$.

Il est clair que les suites u et v sont bien définies (on prend bien la racine-carrée d'un nombre positif ou nul).

• Commençons par prouver que $\forall n \ge 1, u_n \le v_n$.

Soit $n \ge 1$.

En posant $x = u_{n-1}$ et $y = v_{n-1}$, on voit que u_n est de la forme \sqrt{xy} et v_n est de la forme $\frac{x+y}{2}$. D'après l'inégalité arithmético-géométrique, on a $u_n \leq v_n$.

• Montrons que $(u_n)_{n\geqslant 1}$ est croissante.

Soit $n \ge 1$. Étudions la différence $u_{n+1} - u_n$.

On a $u_{n+1} - u_n = \sqrt{u_n v_n} - u_n = \sqrt{u_n} (\sqrt{v_n} - \sqrt{u_n})$ qui est positif d'après le point précédent et le fait que la fonction racine-carrée est croissante.

 \bullet Montrons que $(v_n)_{n\geqslant 1}$ est décroissante.

Soit $n \ge 1$. Étudions la différence $v_{n+1} - v_n$.

On a $v_{n+1} - v_n = \frac{u_n - v_n}{2}$ qui est négatif d'après le premier point.

• On n'a pas encore montré que $\lim (u_n - v_n) = 0$, donc on ne peut pas encore dire que les suites $(u_n)_{n \ge 1}$ et $(v_n)_{n \ge 1}$ sont adjacentes.

Cependant, on peut reprendre les idées de la démonstration du théorème du cours qui dit que deux suites adjacentes convergent vers la même limite. Allons-y.

D'après les trois points précédents, on a

$$\forall n \geqslant 1, \quad u_1 \leqslant u_n \leqslant v_n \leqslant v_1$$

La suite u est croissante majorée (par v_1) donc converge (d'après le th de la limite monotone). La suite v est décroissante minorée (par u_1) donc converge (d'après le th de la limite monotone).

 \bullet Montrons maintenant que u et v convergent vers la **même limite**.

Il faut regarder où l'on voit du $u_n - v_n$ dans ce qui précède.

Et bien, par exemple, dans le troisième point. On voit $v_{n+1} - v_n = \frac{u_n - v_n}{2}$.

Ainsi $u_n - v_n = 2(v_{n+1} - v_n)$. On passe à la limite dans cette égalité en utilisant que v converge. On en déduit que $\lim_{n \to \infty} (u_n - v_n) = 0$.

• On a vu que u et v convergent et que $\lim(u_n - v_n) = 0$, donc u et v convergent vers la même limite.