Dérivation

I	Généralités
	Nombre dérivé
	Dérivabilité = existence d'un DL_1
	Gauche/Droite
	Des exemples à maîtriser parfaitement
II	Opérations
	Point, Plus, Fois
	Composition
	Inverse
	Dérivation d'une bijection
	Fonctions usuelles
III	Théorèmes de Rolle et des accroissements finis
	Extrema
	Théorème de Rolle
	Égalité des accroissements finis
	Dérivée et monotonie
	Stricte monotonie
	Inégalité des accroissements finis
	Application aux suites $u_{n+1} = f(u_n)$
	Théorème de la limite de la dérivée
IV	Dérivées successives
	Classe \mathscr{C}^1
	Classe \mathscr{C}^n et \mathscr{C}^∞
	Opérations
	Fonctions usuelles
	Un exemple plus difficile
V	Extension aux fonctions à valeurs complexes
	Définition
	Ce qui ne change pas : l'aspect opératoire
	Ce qui change : les accroissements finis
	Quelques résultats

Dans tout ce chapitre, *I* désigne un intervalle non trivial (non vide, non réduit à un point).

Généralités I.

Nombre dérivé...

1

Définition. Soit $f: I \to \mathbb{R}$. Soit $a \in I$.

— Le *taux d'accroissement* de f en a est la fonction définie sur $I \setminus \{a\}$ par :

$$\begin{array}{ccc} I \setminus \{a\} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{f(x) - f(a)}{x - a}. \end{array}$$

— La fonction f est dérivable en a lorsque sa fonction taux d'accroissement en a possède une limite finie en a.

Cette limite s'appelle alors *nombre dérivé* de f en a et se note f'(a).

- On dit que f est dérivable sur I lorsque f est dérivable en tout point de I. La fonction définie sur I par $a \mapsto f'(a)$ est appelée fonction dérivée de f, et est notée f'.
- On note $\mathcal{D}(I,\mathbb{R})$ l'ensemble des fonctions dérivables sur I.
- Léger abus. Comme pour les fonctions continues, on s'autorise parfois à parler de fonctions dérivables même dans le cas où elles sont définies sur une réunion d'intervalles d'intérieur non vide. Par exemple:
 - la fonction $x \mapsto \frac{1}{r}$ est dérivable sur \mathbb{R}^*
 - la fonction tangente est dérivable sur ...
- **Notation.** «' » ne s'applique qu'aux fonctions. On peut écrire f'(x), mais surtout pas f(x)'.
- Se ramener en 0.

La fonction f est dérivable en a si et seulement si la fonction $h \mapsto f(a+h)$ est dérivable en 0. Autrement dit, pour étudier la dérivabilité en a, on étudie

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \qquad \text{ou} \qquad \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

• Notion locale. La notion de dérivabilité étant définie à l'aide d'une limite, est une notion locale. Plus précisément, s'il existe r > 0 tel que $f_{|I \cap [a-r,a+r]}$ soit dérivable en a, alors f est dérivable en a et on a $f'(a) = (f_{|I \cap [a-r,a+r]})'(a)$.

2

Proposition (quatre fonctions usuelles).

— La fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ est dérivable sur \mathbb{R} et $f': x \mapsto 0$. $x \longmapsto 1$

$$x \mapsto 1$$

- Soit $n \in \mathbb{N}^*$. La fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ est dérivable sur \mathbb{R} et $f': x \mapsto nx^{n-1}$.
- La fonction $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ $x \longmapsto \sqrt{x}$
 - * est dérivable sur \mathbb{R}^{+*} et $f': x \mapsto \frac{1}{2\sqrt{x}}$.
 - ★ n'est pas dérivable en 0.
- La fonction $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ est dérivable sur \mathbb{R}^* et $f': x \mapsto \frac{-1}{x^2}$.

Dérivabilité = existence d'un DL_1

- 3
- **Proposition (existence d'un développement limité à l'ordre 1).** Soit $f: I \to \mathbb{R}$. Soit $a \in I$.

La fonction f est dérivable en a si et seulement si il existe un réel ℓ et une fonction $\varepsilon:I\to\mathbb{R}$ tels que :

$$\forall \, x \in I, \quad f(x) \, = \, f(a) \, + \, \ell \, (x-a) \, + \, \varepsilon(x) (x-a) \quad \text{ et } \quad \varepsilon(x) \xrightarrow[x \to a]{} \, 0.$$

Dans ces conditions, $f'(a) = \ell$.

- **Vocabulaire.** Une fonction dérivable en *a* possède un développement limité à l'ordre 1 en *a*.
- **Remarque.** On peut en déduire : $\begin{cases} f \text{ dérivable en } a \\ f'(a) \neq 0 \end{cases} \implies f(x) f(a) \underset{x \to a}{\sim} f'(a)(x a)$

Proposition (DL₁ \Longrightarrow DL₀). Soit $f: I \to \mathbb{R}$. Soit $a \in I$.

Si f est dérivable en a, alors f est continue en a.

• Attention. La réciproque est fausse, bien sûr! Penser à la fonction valeur absolue en a = 0.

Gauche/Droite

- 5
- **Définition.** Soit $f: I \to \mathbb{R}$. Soit $a \in I$.
 - Si a n'est pas la borne supérieure de I, on dit que f est dérivable à droite en a si la restriction $f_{|I\cap[a,+\infty[}]}$ est dérivable en a.

Par définition, le nombre *dérivé* à *droite de* f *en a* est $(f_{|I\cap[a,+\infty[})'(a))$. Il est noté $f'_d(a)$.

- On définit de même la dérivabilité à gauche et le nombre dérivé à gauche, en un point a qui n'est pas l'extrémité inférieure de I. Il est noté $f'_g(a)$.
- Mini remarque. Si a est l'extrémité supérieure de I, alors l'intersection $I \cap [a, +\infty[$ est réduite au singleton $\{a\}$, donc la question de la dérivabilité à *droite* de f en a n'a pas de sens.
- Of course. Si f est dérivable à droite en a, alors f est continue à droite en a.
- **Résultat.** Soit $a \in \mathring{I}$ (un point intérieur).

On a l'équivalence

$$f$$
 dérivable à gauche en a

$$\begin{cases}
f \text{ dérivable à gauche en } a \\
f \text{ dérivable à droite en } a \\
f'_g(a) = f'_d(a)
\end{cases}$$

• **Différence.** Soit $a \in \mathring{I}$ (un point intérieur).

On a l'équivalence

$$f$$
 continue en $a \iff \begin{cases} f \text{ contine à gauche en } a \\ f \text{ continue à droite en } a \end{cases}$

• Exemple/Contre-exemple.

La fonction $f: x \mapsto |x|$ est dérivable à gauche et à droite en 0, mais n'est pas dérivable en 0.

Preuve.

La restriction de f à $]-\infty,0]$ est la fonction $x\mapsto -x$ qui est dérivable en 0, de nombre dérivé -1.

Donc $f'_g(0) = -1$.

De même, on a $f'_d(0) = 1$.

Ainsi, f n'est pas dérivable en 0.

Des exemples à maîtriser parfaitement

Question.

- i) La fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ est-elle dérivable en 0? $x \longmapsto |x^3|$
- ii) La fonction $f: [1,+\infty[\longrightarrow \mathbb{R}]$ est-elle dérivable en 1? $x \longmapsto \sqrt{x^3-1}$
- iii) La fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ est-elle dérivable en 0? $x \longmapsto \begin{cases} x \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

i)

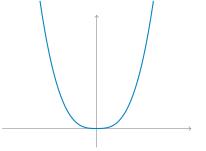
Examinons le taux d'accroissement en 0.

On a:

$$\forall x \neq 0, \qquad \frac{f(x) - f(0)}{x - 0} = \frac{|x^3| - |0^3|}{x - 0} = \frac{|x|^3}{x} = \frac{x^2|x|}{x} = x|x|$$

Cette dernière quantité tend vers 0 quand $x \rightarrow 0$.

Bilan : f est dérivable en 0 et f'(0) = 0.



ii) Examinons le taux d'accroissement en 1.

$$\forall x \neq 1, \qquad \frac{f(x) - f(1)}{x - 1} = \frac{\sqrt{x^3 - 1}}{x - 1} = \frac{\sqrt{(x - 1)(x^2 + x + 1)}}{x - 1} = \frac{\sqrt{x^2 + x + 1}}{\sqrt{x - 1}}$$

(le quantificateur $\forall x \neq 1$ est à comprendre : « pour tout $x \in [1, +\infty[$ différent de 1 »).

En 1, on a
$$\sqrt{x^2 + x + 1} \to \sqrt{3}$$
 et $\frac{1}{\sqrt{x - 1}} \to +\infty$, donc $\frac{f(x) - f(1)}{x - 1} \to +\infty$.

Pour info : \mathcal{C}_f admet une tangente verticale au point d'abscisse 1.

iii) Examinons le taux d'accroissement en 0.

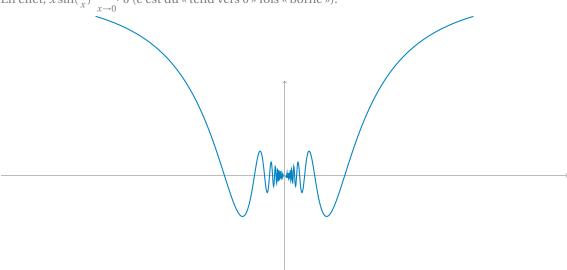
$$\forall x \neq 0, \quad \frac{f(x) - f(0)}{x - 0} = \frac{x \sin(\frac{1}{x}) - 0}{x - 0} = \sin(\frac{1}{x})$$

Cette dernière quantité n'admet pas de limite en 0 (savez-vous le prouver?).

Bilan : f n'est pas dérivable en 0 (et n'admet même pas de tangente en ce point).

En revanche, on peut montrer que f est bien continue en 0.

En effet, $x \sin(\frac{1}{x}) \xrightarrow[x \to 0]{} 0$ (c'est du « tend vers 0 » fois « borné »).



Opérations

Point, Plus, Fois

7

Proposition (opérations « point, plus, fois »).

Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$. Soit $\lambda \in \mathbb{R}$. Soit $a \in I$.

— Si f et g sont dérivables en a, alors $\lambda \cdot f$, f + g et $f \times g$ sont dérivables en a et :

$$(\lambda \cdot f)'(a) = \lambda f'(a)$$

$$(f+g)'(a) = f'(a)+g'(a)$$

$$(\lambda \cdot f)'(a) = \lambda f'(a)$$
 $(f + g)'(a) = f'(a) + g'(a)$ $(f \times g)'(a) = f'(a)g(a) + f(a)g'(a)$

— Si f et g sont dérivables sur I, alors $\lambda \cdot f$, f + g et $f \times g$ sont dérivables sur I et :

$$(\lambda \cdot f)' = \lambda \cdot f'$$

$$(f+g)' = f'+g'$$

$$(\lambda \cdot f)' = \lambda \cdot f' \qquad (f + g)' = f' + g' \qquad (f \times g)' = f' \times g + f \times g'$$

• Puissance. Par récurrence, on obtient :

si f est dérivable sur I, alors pour tout $n \in \mathbb{N}^*$, la fonction f^n est dérivable sur I et $(f^n)' = nf'f^{n-1}$.

• Algèbre linéaire.

Comme la fonction nulle est bien sûr dérivable sur I et qu'une combinaison linéaire de fonctions dérivables sur I est dérivable sur I, on en déduit que

 $\mathcal{D}(I,\mathbb{R})$ est un sous-espace vectoriel de \mathbb{R}^I

De plus, l'application $D\colon \mathcal{D}(I,\mathbb{R}) \longrightarrow \mathbb{R}^I$ est une application linéaire.

$$f \mapsto f$$

Peut-on « en faire » un endomorphisme?

• Fonctions polynomiales. On a déjà vu que les fonctions monomiales sont dérivables.

Par combinaison linéaire, on en déduit que les fonctions polynomiales sont dérivables.

On a même un petit bonus : la dérivée d'une fonction polynomiale est une fonction polynomiale.

Peut-on faire intervenir un certain endomorphisme?

Composition

8

Proposition (dérivée d'une composée).

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux fonctions telles que $f(I) \subset J$.

- Si $\begin{cases} f \text{ est d\'erivable en } a \\ g \text{ est d\'erivable en } f(a) \end{cases}$ alors $g \circ f$ est d\'erivable en a et $(g \circ f)'(a) = g'(f(a))f'(a)$
- Si $\begin{cases} f \text{ est d\'erivable sur } I \text{ à valeurs dans } J \\ g \text{ est d\'erivable sur } J \end{cases}$ alors $g \circ f$ est d\'erivable sur $I \text{ et } (g \circ f)' = (g' \circ f) \times f'$
- **Joli!** Si on note b = f(a), alors la formule s'écrit joliment $(g \circ f)'(a) = g'(b) f'(a)$.
- Grosso modo.

On peut facilement intuiter le résultat précédent dans le cas particulier où l'on aurait $f(x) \neq f(a)$ pour tout $x \in I \setminus \{a\}$, en observant :

$$\frac{\left(g\circ f\right)(x)-\left(g\circ f\right)(a)}{x-a}=\frac{\left(g\circ f\right)(x)-\left(g\circ f\right)(a)}{f(x)-f(a)}\frac{f(x)-f(a)}{x-a}\cdot$$

• Attention. Le théorème ne dit pas

Si
$$\begin{cases} f \text{ est non-dérivable en } a \\ g \text{ est dérivable en } f(a) \end{cases}$$
 alors $g \circ f$ est non-dérivable en a

Par exemple,

 $\begin{cases} \text{la fonction } f: x \mapsto \sqrt{x-3} \text{ est non-dérivable en 3} \\ \text{la fonction } g: t \mapsto t^2 \text{ est dérivable en } f(3) = 0 \end{cases}$

mais la fonction $x \mapsto (\sqrt{x-3})^2$ est dérivable en 3 (WHY?).

9

Question. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction T-périodique dérivable.

Montrer que f' est une fonction T-périodique.

Inverse

10

Proposition (inverse). Soit $f: I \to \mathbb{R}$. Soit $a \in I$.

- Si $\begin{cases} f \text{ est dérivable en } a \\ f(a) \neq 0 \end{cases}$ alors $\frac{1}{f}$ est dérivable en a et $\left(\frac{1}{f}\right)'(a) = -\frac{f'(a)}{f(a)^2}$.
- Si $\begin{cases} f \text{ est d\'erivable sur } I \\ f \text{ ne s'annule pas sur } I \end{cases}$ alors $\frac{1}{f}$ est d\'erivable sur I et $\left(\frac{1}{f}\right)' = \frac{-f'}{f^2}$.
- **Puissance négative.** Par récurrence : « si f est dérivable et ne s'annule pas sur I, alors pour tout $n \in \mathbb{Z}^{-*}$, la fonction f^n est dérivable sur I et $(f^n)' = nf'f^{n-1}$ ».
- Formule du lycée. En combinant le produit et l'inverse, on obtient :

si f et g sont dérivables sur I et si g ne s'annule pas sur I, alors la fonction $\frac{f}{g}$ est dérivable

$$sur\ I\ et\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}.$$

Dérivation d'une bijection

• Rappel (continuité).

La bijection réciproque d'une fonction continue sur un intervalle est continue.

New (dérivabilité).

La bijection réciproque d'une fonction dérivable sur un intervalle, *dont la dérivée ne s'annule pas*, est dérivable.

11

Proposition. Soit $f: I \rightarrow J$ une fonction bijective continue.

— Soit $a \in I$. On suppose que f est dérivable en a.

Alors

$$f^{-1}$$
 est dérivable en $f(a) \iff f'(a) \neq 0$

Dans ce cas,
$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}$$
.

— On a:

$$\begin{cases} f \text{ dérivable sur } I \\ f' \text{ ne s'annule pas sur } I \end{cases} \implies f^{-1} \text{ est dérivable sur } J \text{ et } (f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

• **Joli!** Si on pose b = f(a) et $g = f^{-1}$, alors on a, sous couvert de dérivabilité, $\underbrace{(g \circ f)'(a)}_{id'(a) = 1} = g'(b) f'(a)$.

Ce qui permet de retenir facilement (et comprendre) la formule en un point a.

Fonctions usuelles

12

Proposition (liste non exhaustive!).

- La fonction $x \mapsto \ln x$ est dérivable sur]0, $+\infty$ [et sa dérivée vaut $x \mapsto \frac{1}{x}$.
- La fonction $x \mapsto e^x$ est dérivable sur \mathbb{R} et sa dérivée vaut $x \mapsto e^x$.
- Pour a > 0, la fonction $x \mapsto a^x$ est dérivable sur \mathbb{R} et sa dérivée vaut $x \mapsto (\ln a) a^x$.
- Pour $\alpha \in \mathbb{R}$, la fonction $x \mapsto x^{\alpha}$ est dérivable sur $]0, +\infty[$ et sa dérivée vaut $x \mapsto \alpha x^{\alpha-1}$.
- Les fonctions cosinus et sinus sont dérivables sur \mathbb{R} et on a $(\cos)' = -\sin$ et $(\sin)' = \cos$.
- La fonction tangente est dérivable sur $\bigcup_{k \in \mathbb{Z}}]-\frac{\pi}{2}+k\pi, \frac{\pi}{2}+k\pi[$ et $\tan'=1+\tan^2=\frac{1}{\cos^2}.$
- La fonction Arcsinus est dérivable sur]-1,1[et Arcsin': $x \mapsto \frac{1}{\sqrt{1-x^2}}$.
- La fonction Arccosinus est dérivable sur]-1,1[et Arccos': $x \mapsto \frac{-1}{\sqrt{1-x^2}}$.
- La fonction Arctangente est dérivable sur \mathbb{R} et Arctan': $x \mapsto \frac{1}{1+x^2}$.

13

Question. Montrer que la fonction $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ est dérivable sur \mathbb{R}^* et déterminer sa dérivée.

14 sol → 20

Question. Dessiner l'allure du graphe de la fonction. Est-elle dérivable sur \mathbb{R} ? Si oui, donner la dérivée.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto |x| \sin x$$

III. Théorèmes de Rolle et des accroissements finis

Extrema

15

Définition. Soit $f: I \to \mathbb{R}$.

— On dit que f admet un $maximum\ local\ en\ a$ lorsque f est majorée par f(a) au voisinage de a. Autrement dit, lorsqu'il existe un réel $\delta>0$ tel que la fonction $f_{|_{I\cap[a-\delta,a+\delta]}}$ admette un maximum en $a,\ i.e.$:

$$\forall x \in I \cap [a - \delta, a + \delta], f(x) \leq f(a).$$

- On définit de même la notion de *minimum local*.
- On dit que *f* admet un *extremum local en a* lorsque *f* admet en *a* un maximum ou un minimum local.
- **Pratique.** La fonction f admet un maximum local en a si et seulement si -f admet un minimum local en a.
- Vocabulaire.

On utilise parfois la locution « maximum global » à la place de maximum. De même pour « minimum global » et « extremum global ».

Un extremum global est évidemment un extremum local.

16

Le lemme de « l'extremum local ».

Soit $f: I \to \mathbb{R}$ une fonction dérivable en a.

$$\begin{cases} a \text{ est un point intérieur à } I \\ f \text{ possède un extremum local en } a \in \mathring{I} \end{cases} \implies f'(a) = 0$$

• **Vocabulaire.** Un point critique est un point en lequel f est dérivable et de dérivée nulle. Le lemme peut donc s'énoncer :

Pour qu'une fonction dérivable $f: I \to \mathbb{R}$ admette un extremum local en un point intérieur $a \in \mathring{I}$, il est nécessaire que a soit un point critique.

• Attention. Il est important que a soit un point intérieur. Considérons par exemple $f:[0,1] \longrightarrow \mathbb{R}$

Cette fonction est dérivable, admet un minimum en 0 (qui vaut 3) et un maximum en 1 (qui vaut 4), et pourtant f'(0) et f'(1) ne sont pas nuls.

• **Réciproque fausse.** On peut avoir f'(a) = 0 sans que f ne possède d'extremum local en a. Considérons par exemple $f: x \mapsto (x-a)^3 + 5$.

Théorème de Rolle

17

Théorème de Rolle.

Soit f définie sur un intervalle contenant a < b.

$$\begin{cases} f \text{ continue sur } [a, b] \\ f \text{ dérivable sur }]a, b[\implies \text{ il existe } c \in]a, b[\text{ tel que } f'(c) = 0 \\ f(a) = f(b) \end{cases}$$

- Preuve. Les ingrédients de la preuve sont « Théorème des bornes atteintes » puis « le lemme de l'extremum local ».
- Trois. Dans ce théorème, il y a 3 hypothèses à vérifier.
- **Existence.** Ce théorème est un théorème d'existence (il fournit l'existence d'un c tel que ...). Il n'y a pas unicité de c.

Considérer par exemple, la fonction sinus sur $[0,2\pi]$.

On a $\sin(0) = \sin(2\pi)$, et sa fonction dérivée cos s'annule deux fois sur $[0,2\pi]$, à savoir en $\frac{\pi}{2}$ et $\frac{3\pi}{2}$.

Des dessins.

Égalité des accroissements finis

18

Théorème des accroissements finis.

Soit f définie sur un intervalle contenant a < b.

$$\begin{cases} f \text{ continue sur } [a, b] \\ f \text{ dérivable sur }]a, b[\end{cases} \implies \text{il existe } c \in]a, b[\text{ tel que } f'(c) = \frac{f(b) - f(a)}{b - a} \end{cases}$$

• Sans dénominateur. La conclusion s'écrit parfois sans dénominateur

$$f(b) - f(a) = f'(c)(b - a)$$

Ainsi, l'accroissement de f entre a et b s'exprime en fonction de la dérivée de f et de l'accroissement de x entre a et b.

- **Géométriquement.** Ce théorème dit qu'il existe un point c intérieur en lequel la tangente à \mathcal{C}_f est parallèle à la droite (AB) où A = (a, f(a)) et B = (b, f(b)).
- Moralement. Si on a des informations sur f', alors on en a aussi sur f grâce à l'égalité des accroissements finis.
- Rolle versus TAF. Il est facile de constater que « TAF \implies Rolle ».

Or, dans la preuve du TAF, on utilise Rolle, donc « Rolle \implies TAF ».

Les deux énoncés sont donc logiquement équivalents, mais n'ont pas la même portée (pas le même impact psychologique). Apprendre les deux énoncés est donc une bonne chose.

Dérivée et monotonie

Proposition. Soit $f: I \to \mathbb{R}$.

On suppose que
$$\begin{cases} I \text{ est un intervalle} \\ f \text{ est continue sur } I & \text{Alors :} \quad f \text{ croissante sur } I \iff f' \text{ positive sur } \mathring{I} \\ f \text{ est dérivable sur } \mathring{I}. \end{cases}$$

• L'énoncé du lycée. Cette proposition est très générale car les hypothèses sont « faibles » : on demande « seulement » la dérivabilité sur l'intérieur.

Il est bon d'apprendre aussi la forme simplifiée suivante, très utile dans la pratique :

On suppose que
$$\begin{cases} I \text{ est un intervalle} \\ f \text{ est dérivable sur } I \end{cases}$$
 Alors: $f \text{ croissante sur } I \iff f' \text{ positive sur } I$

- Exemple. La fonction $f\colon \mathbb{R}^+ \longrightarrow \mathbb{R}$ est croissante. Quel résultat utilisez-vous? $x \longmapsto \sqrt{x}$
 - **Attention.** Le résultat du théorème précédent est faux si l'on ne se place pas sur un *intervalle*. Par exemple, considérons la fonction $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ qui est dérivable de dérivée $f': x \mapsto \frac{1}{x^2}$ positive. $x \mapsto \frac{-1}{x}$ Pourtant f n'est pas croissante, puisque f(-1) > f(1).

Proposition. Soit $f: I \to \mathbb{R}$.

On suppose que
$$\begin{cases} I \text{ est un intervalle} \\ f \text{ est continue sur } I & \text{Alors : } f \text{ décroissante sur } I \iff f' \text{ négative sur } \mathring{I} \\ f \text{ est dérivable sur } \mathring{I}. \end{cases}$$

21 Proposition. Soit $f: I \to \mathbb{R}$.

On suppose que
$$\begin{cases} I \text{ est un intervalle} \\ f \text{ est continue sur } I & \text{Alors}: \quad f \text{ constante sur } I \iff f' \text{ nulle sur } \mathring{I} \\ f \text{ est dérivable sur } \mathring{I}. \end{cases}$$

- **22** Question.
 - 1. Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables dont la dérivée est constante.
 - 2. En déduire les fonctions $f:\mathbb{R} \to \mathbb{R}$ dérivables vérifiant

$$\forall (x, y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y)$$

Stricte monotonie

Proposition. Soit $f: I \to \mathbb{R}$. **23**

On suppose que $\begin{cases} I \text{ est un intervalle} \\ f \text{ est continue sur } I \\ f \text{ est dérivable sur } \mathring{I}. \end{cases}$

Alors:

· L'énoncé du lycée.

Dans la pratique, pour démontrer qu'une fonction dérivable est strictement monotone sur un intervalle, on pensera à regarder si sa dérivée est de signe strict et ne s'annule qu'en un nombre fini de points.

Autrement dit, il est bon d'avoir en tête la condition suffisante suivante

 $\int f'$ est positive sur \mathring{I} f est strictement croissante sur I f' ne s'annule qu'en un nombre fini de points

- **Question.** Étudier les variations de la fonction $f: x \mapsto \sqrt{x} \ln(1+x)$.
- **Question.** Montrer que la fonction $f: x \mapsto \cos(x) x$ est strictement décroissante sur \mathbb{R} .

Inégalité des accroissements finis

Définition. **26**

> Soit $f: I \to \mathbb{R}$ définie sur un intervalle I. Soit K > 0. On dit que *f* est *K*-lipschitzienne lorsque

$$\forall x_1, x_2 \in I, \quad |f(x_1) - f(x_2)| \leq K|x_1 - x_2|$$

Proposition (inégalité des accroissements finis). Soit $f: I \to \mathbb{R}$ définie sur un intervalle I. **27**

Si
$$\begin{cases} f \text{ est continue sur } I \\ f \text{ est dérivable sur } \mathring{I} \end{cases}$$
 alors $f \text{ est } K\text{-lipschitzienne.}$ $|f'| \text{ est } majorée, \text{ disons par } K$

Il y a une réciproque à ce théorème :

$$Si\begin{cases} f \ est \ d\'{e}rivable \ sur \ I \\ f \ est \ K-lipschitzienne \end{cases}$$
 alors la fonction $|f'|$ est majorée sur I par K .

En effet, soit $a \in I$ un point en lequel f est dérivable.

Comme f est K-lipschitzienne, pour tout $x \in I \setminus \{a\}$, on a $\left| \frac{f(x) - f(a)}{x - a} \right| \le K$.

En faisant tendre x vers a dans cette inégalité, on obtient $|f'(a)| \leq K$.

• Version double inégalité. L'inégalité des accroissements finis écrite avec des valeurs absolues peut encore s'écrire :

$$\forall x_1, x_2 \in I, \quad -K|x_1 - x_2| \leq f(x_1) - f(x_2) \leq K|x_1 - x_2|.$$

On peut obtenir un encadrement plus précis si la majoration sur f' est donnée par une double inégalité plutôt qu'avec une seule inégalité et une valeur absolue.

Plus précisément,

$$Si \begin{cases} f \ est \ continue \ sur \ I \\ f \ est \ d\'{e}rivable \ sur \ \mathring{I} \\ \forall \ t \in \mathring{I}, \ m \leqslant f'(t) \leqslant M \end{cases} \qquad \forall \ a < b \in I, \quad m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a)$$

- **Question.** Trouver une suite (u_n) sans limite vérifiant $u_{n+1} u_n \to 0$. On pourra penser à du cosinus.
- **Proposition (inégalités de convexité usuelles).** On a

$$\forall x \in \mathbb{R}, \quad |\sin x| \leqslant |x| \quad \text{et} \quad \forall x \in]-1, +\infty[, \quad \ln(1+x) \leqslant x]$$

Application aux suites $u_{n+1} = f(u_n)$

Soit $f: I \to \mathbb{R}$.

On suppose que I est stable par f.

On peut alors considérer des suites $(u_n)_{n\in\mathbb{N}}$ définies par $\begin{cases} u_0 \in I \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$

On a déjà démontré

$$\begin{cases} u_n \xrightarrow[n \to +\infty]{} \ell \\ f \text{ continue en } \ell \in I \end{cases} \implies f(\ell) = \ell$$

Souvent, la difficulté est de démontrer que la suite converge effectivement. La proposition suivante permet de conclure dans certains cas.

Proposition. Soit $f: I \to \mathbb{R}$ une fonction.

On suppose que $\begin{cases} f \text{ stabilise } I \\ f \text{ admet un point fixe } c \in I \\ f \text{ est dérivable et il existe } K < 1 \text{ tel que } \forall \ t \in I, \ |f'(t)| \leqslant K \end{cases}$

Alors toute suite u définie par $\begin{cases} u_0 \in I \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \end{cases}$ converge vers c.

31 Question. Étudier la convergence de la suite définie par $\begin{cases} u_0 \in [0,1] \\ \forall n \in \mathbb{N}, \ u_{n+1} = 1 - \frac{u_n^2}{4} \end{cases}$

Théorème de la limite de la dérivée

32

Proposition (quand la dérivée a une limite...)

Soit $f: I \to \mathbb{R}$ une fonction $\begin{cases} \text{continue sur } I \\ \text{dérivable sur } I \setminus \{a\} \end{cases}$

- Si $f'(x) \xrightarrow[x \to a]{} \ell \in \mathbb{R}$, alors f est dérivable en a et $f'(a) = \ell$.
- Si $f'(x) \xrightarrow[x \to a]{} \pm \infty$, alors $\frac{f(x) f(a)}{x a} \xrightarrow[x \to a]{} \pm \infty$; en particulier f n'est pas dérivable en a.

33

Théorème de la limite (finie) de la dérivée.

Soit $f: I \to \mathbb{R}$.

Si
$$\begin{cases} f \text{ est continue sur } I \\ f \text{ est dérivable sur } I \setminus \{a\} \\ f'(x) \xrightarrow[x \to a]{} \ell \in \mathbb{R} \end{cases}$$
 alors
$$\begin{cases} f \text{ est dérivable en } a \text{ et } f'(a) = \ell \\ f' \text{ est continue en } a \end{cases}$$

- **Reformulation.** La conclusion peut aussi s'énoncer « alors f est dérivable sur I tout entier et f' est continue en a».
- Outil. Pour déterminer si une fonction $f: I \to \mathbb{R}$, a priori continue sur I et dérivable sur $I \setminus \{a\}$, est effectivement dérivable en a, on peut :
 - ★ soit étudier le taux d'accroissement en a
 - ★ soit utiliser le théorème de la limite de la dérivée, sans oublier de prouver la continuité de f en a. Cette méthode n'a d'intérêt que si la dérivée est plus simple à étudier que le taux d'accroissement.

Question.

est dérivable sur R tout entier.

Question.

Montrer que la fonction
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} x^3 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

IV. Dérivées successives

Définition. Soit $f: I \to \mathbb{R}$.

On définit par récurrence les *dérivées successives de f* sous réserve d'existence en posant :

- $f^{(0)} = f$
- pour tout $n \in \mathbb{N}$, si $f^{(n)}$ est dérivable, $f^{(n+1)} = (f^{(n)})'$.

Pour $n \in \mathbb{N}$, la fonction $f^{(n)}$, si elle existe, est appelée *dérivée* n-*ième* de f ou dérivée de f d'ordre n.

- **Convention.** Toute fonction $f: I \to \mathbb{R}$ est 0 fois dérivable et $f^{(0)} = f$.
- **Notation.** On note $\mathcal{D}^n(I,\mathbb{R})$ l'ensemble des fonctions n fois dérivable sur I à valeurs réelles.
- **Remarque.** Soit $n \in \mathbb{N}$ et $k \in [0, n]$. L'appartenance $f \in \mathcal{D}^n(I, \mathbb{R})$ équivaut à $f \in \mathcal{D}^k(I, \mathbb{R})$ et $f^{(k)} \in \mathcal{D}^{n-k}(I, \mathbb{R})$.

Question. Soit $n \in \mathbb{N}^*$ et $\varphi : I \to \mathbb{R}$ une fonction n-fois dérivable.

Montrer que : Si $\varphi^{(n)}$ est la fonction nulle, alors φ est une fonction polynomiale de degré $\leqslant n-1$.

Classe \mathscr{C}^1

37 Définition.

- On dit qu'une fonction est de $classe \mathscr{C}^1$ lorsqu'elle est dérivable et que sa dérivée est continue.
- On note $\mathscr{C}^1(I,\mathbb{R})$ l'ensemble des fonctions de classe \mathscr{C}^1 sur I à valeurs réelles.
- Vocabulaire. Une fonction de classe \mathscr{C}^1 est encore dite « continûment dérivable ».
- Cas particulier. Toute fonction de classe \mathscr{C}^1 est bien sûr dérivable. La réciproque est fausse.
- Opérations. Une combinaison linéaire et un produit de fonctions de classe \mathscr{C}^1 est de classe \mathscr{C}^1 .
- Théorème de la limite de la dérivée, version \mathscr{C}^1 . Voici une reformulation :

Soit $f: I \to \mathbb{R}$. $\begin{cases} f \text{ est continue sur } I \\ f \text{ est de classe } \mathscr{C}^1 \text{ sur } I \setminus \{a\} \\ f'(x) \xrightarrow[x \to a]{} \ell \in \mathbb{R} \end{cases} \text{ alors } f \text{ est de classe } \mathscr{C}^1 \text{ sur } I \text{ tout entier et } f'(a) = \ell$

38 Question.

La fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ est-elle de classe \mathscr{C}^1 sur \mathbb{R} si n=1, si n=2, si n=3? $x \longmapsto \begin{cases} x^n \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

39 Question.

Proposition. Soit a < b et $f \in \mathcal{C}^1([a, b], \mathbb{R})$. Alors:

- |f'| est bornée et atteint ses bornes, donc $\max_{[a,b]} |f'|$ existe
- en notant $K = \max_{t \in [a,b]} |f'(t)|$, la fonction f est K-lipschitzienne.
- **En français.** Une fonction de classe \mathscr{C}^1 sur un segment est lipschitzienne. Plus précisément, elle est K-lipschitzienne où $K = \max_{t \in [t, t]} |f'(t)|$.

40

41 Définition (classe \mathscr{C}^n). Soit $f: I \to \mathbb{R}$.

— Soit n ∈ \mathbb{N} .

On dit que f est de $classe \mathscr{C}^n$ lorsqu'elle est n fois dérivable et que sa fonction dérivée $n^{\text{ème}}$ est continue.

- On dit que f est de classe \mathscr{C}^{∞} lorsqu'elle est de classe \mathscr{C}^n pour tout $n \in \mathbb{N}$.
- **Notation.** On note $\mathscr{C}^n(I,\mathbb{R})$ l'ensemble des fonctions de classe \mathscr{C}^n sur I à valeurs réelles. En particulier, $\mathscr{C}^0(I,\mathbb{R})$ est l'ensemble des fonctions continues sur I.
- **Deux évidences.** Par définition, on a $\mathscr{C}^n(I,\mathbb{R}) \subset \mathscr{D}^n(I,\mathbb{R})$ et $\mathscr{C}^{\infty}(I,\mathbb{R}) = \bigcap_{n \in \mathbb{N}} \mathscr{C}^n(I,\mathbb{R})$.
- Inclusion. On dispose ainsi de la chaîne (infinie) d'inclusions :

$$\mathscr{C}^{0}(I,\mathbb{R})\supset\mathscr{C}^{1}(I,\mathbb{R})\supset\cdots\supset\mathscr{C}^{n}(I,\mathbb{R})\supset\mathscr{C}^{n+1}(I,\mathbb{R})\supset\cdots\supset$$

• **Remarque importante.** Pour démontrer qu'une fonction f est de classe \mathscr{C}^{∞} , il *suffit* de vérifier que f est n fois dérivable pour tout $n \in \mathbb{N}$. C'est une façon de raconter que :

$$\mathcal{C}^{\infty}(I,\mathbb{R}) = \bigcap_{n \in \mathbb{N}} \mathcal{D}^{n}(I,\mathbb{R})$$

Souvent, on pourra procéder par récurrence en montrant qu'elle est n-fois dérivable pour tout $n \in \mathbb{N}$. Dans l'hérédité, pour montrer qu'une certaine fonction f est (n+1)-fois dérivable, on pourra essayer de montrer que

-f est dérivable ou bien -f est n fois dérivable -f' est n fois dérivable $-f^{(n)}$ est dérivable

Proposition (fonctions usuelles).

— Soit p ∈ \mathbb{N} .

42

La fonction $f: x \mapsto x^p$ est de classe \mathscr{C}^{∞} sur \mathbb{R} et

$$\forall r \in \mathbb{N}, \quad f^{(r)}: x \mapsto \begin{cases} p(p-1)\cdots(p-r+1)x^{p-r} & \text{si } r \leqslant p \\ 0 & \text{sinon} \end{cases}$$

- La fonction $f: x \mapsto \frac{1}{x}$ est de classe \mathscr{C}^{∞} sur \mathbb{R}^* et $\forall n \in \mathbb{N}, \ f^{(n)}: x \mapsto \frac{(-1)^n \, n!}{x^{n+1}}$
- La fonction logarithme est de classe \mathscr{C}^{∞} sur]0,+ ∞ [et

$$\forall n \in \mathbb{N}, \quad \ln^{(n)} : x \mapsto \begin{cases} \ln x & \text{si } n = 0\\ \frac{(-1)^{n-1} (n-1)!}{x^n} & \text{si } n \geqslant 1 \end{cases}$$

- La fonction exponentielle est de classe \mathscr{C}^{∞} sur \mathbb{R} et $\forall n \in \mathbb{N}$, $\exp^{(n)}: x \mapsto e^x$.
- Les fonctions sin et cos sont de classe \mathscr{C}^{∞} sur \mathbb{R} et on a :

$$\forall n \in \mathbb{N}, \quad \sin^{(n)}: x \mapsto \sin\left(x + n\frac{\pi}{2}\right) \quad \text{et} \quad \cos^{(n)}: x \mapsto \cos\left(x + n\frac{\pi}{2}\right).$$

Opérations

Proposition (combinaison linéaire). Soit $n \in \mathbb{N}$. Soit $f, g : I \to \mathbb{R}$ et $\lambda, \mu \in \mathbb{R}$.

— Si f et g sont n-fois dérivables sur I, alors la fonction $\lambda f + \mu g$ est n-fois dérivable sur I et

$$(\lambda f + \mu g)^{(n)} = \lambda f^{(n)} + \mu g^{(n)}.$$

— Si f et g sont de classe \mathscr{C}^n sur I, alors f+g est de classe \mathscr{C}^n sur I.

· Algèbre linéaire.

Comme la fonction nulle est bien sûr n-fois dérivable sur I et qu'une combinaison linéaire de fonctions n-fois dérivables sur I est n-fois dérivable sur I, on en déduit que :

$$\mathcal{D}^n(I,\mathbb{R})$$
 est un sous-espace vectoriel de \mathbb{R}^I

De plus, l'application
$$\mathcal{D}^n(I,\mathbb{R}) \longrightarrow \mathbb{R}^I$$
 est une application linéaire. $f \longmapsto f^{(n)}$

On a le même résultat en remplaçant \mathcal{D}^n par \mathcal{C}^n .

Proposition (produit : formule de Leibniz). Soit $n \in \mathbb{N}$. Soit $f, g : I \to \mathbb{R}$ et $\lambda, \mu \in \mathbb{R}$.

— Si f et g sont n-fois dérivables sur I, alors la fonction f g est n-fois dérivable sur I et :

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}.$$

- Si f et g sont de classe \mathscr{C}^n sur I, alors fg est de classe \mathscr{C}^n sur I.
- **Exemple.** Soit $\varphi : \mathbb{R} \to \mathbb{R}$ définie par $\varphi : x \mapsto x^2 e^x$.

Alors φ est de classe \mathscr{C}^{∞} sur \mathbb{R} , et pour tout $n \in \mathbb{N}$, on a $\varphi^{(n)}: x \mapsto (x^2 + 2nx + n(n-1))e^x$.

Posons
$$f: x \mapsto x^2$$
 et $g: x \mapsto e^x$, qui sont des fonctions de classe \mathscr{C}^{∞} sur \mathbb{R} .

En tant que produit de f et g, la fonction φ est de classe \mathscr{C}^{∞} .

Pour tout $k \in \mathbb{N}$, on a $g^{(k)} = g$.

De plus $f': x \mapsto 2x$, $f'': x \mapsto 2$ et $f^{(k)} = 0$ pour tout $k \ge 3$.

La formule de Leibniz donne donc, pour tout entier $n \ge 2$:

$$\varphi^{(n)} = f g^{(n)} + n f' g^{(n-1)} + \frac{n(n-1)}{2} f'' g^{(n-2)},$$

soit:

$$\varphi^{(n)}: x \mapsto \left(x^2 + 2nx + n(n-1)\right)e^x.$$

On vérifie que cette expression est encore valable lorsque $n \in \{0, 1\}$.

Proposition (composition). Soit $n \in \mathbb{N}$. Soit $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux fonctions telles que $f(I) \subset J$. Si $\begin{cases} f \text{ est de classe } \mathscr{C}^n \text{ sur } I \text{ à valeurs dans } J \\ g \text{ est de classe } \mathscr{C}^n \text{ sur } J \end{cases}$ alors $g \circ f$ est de classe $\mathscr{C}^n \text{ sur } I$.

- Attention. On n'a pas du tout $(g \circ f)^{(n)} = g^{(n)} \circ f^{(n)}$
- **Idem.** On a le même résultat en remplaçant \mathcal{D}^n par \mathcal{C}^n .

Proposition (inverse). Soit $n \in \mathbb{N}$.

Si
$$\begin{cases} f \text{ est de classe } \mathscr{C}^n \text{ sur } I \\ f \text{ ne s'annule pas sur } I \end{cases}$$
 alors $\frac{1}{f} \text{ est de classe } \mathscr{C}^n \text{ sur } I.$

47

Proposition (Bijection de classe \mathscr{C}^n). Soit $n \in \mathbb{N}^*$. Soit I et J deux intervalles d'intérieur non vide. Soit $f: I \to J$ une bijection.

$$\operatorname{Si} \begin{cases} f \text{ est de classe } \mathscr{C}^n \text{ sur } I \\ f' \text{ ne s'annule pas sur } I \end{cases} \text{ alors la bijection réciproque } f^{-1} \text{ est de classe } \mathscr{C}^n \text{ sur } J.$$

- **Remarque.** La condition pour que f^{-1} soit de classe \mathscr{C}^n ne porte que sur la dérivée *première*, à savoir que la fonction f' ne s'annule pas.
- On ne dispose pas de formule « simple » pour calculer la dérivée $n^{\text{ème}}$ d'une bijection réciproque.

Fonctions usuelles

On peut retenir que les fonctions usuelles sont généralement de classe \mathscr{C}^{∞} sur le domaine de définition de leur dérivée, à l'exception des fonctions $x \mapsto x^{\alpha}$, où $\alpha \in \mathbb{R}_+ \setminus \mathbb{N}$ (cf. exercice de TD).

48 Question à l'oral.

- La fonction tangente est de classe \mathscr{C}^{∞} sur son ensemble de définition (WHY?).
- Les fonctions ch et sh sont de classe \mathscr{C}^{∞} sur \mathbb{R} (WHY?).
- Soit $\alpha \in \mathbb{R}$. La fonction $x \mapsto x^{\alpha}$ définie sur $]0, +\infty[$ est de classe \mathscr{C}^{∞} (WHY?).
- La fonction Arctan est de classe \mathscr{C}^{∞} sur \mathbb{R} (WHY?).
- Les fonctions Arcsin et Arccos restreintes à]-1,1[sont de classe \mathscr{C}^{∞} (WHY?).

Un exemple plus difficile

49

Une fonction de classe \mathscr{C}^{∞} définie par morceaux.

Considérons la fonction suivante :

$$f: \mathbb{R}^+ \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} \exp\left(\frac{-1}{x}\right) & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$$

Montrer que f est de classe \mathscr{C}^{∞} sur \mathbb{R}^+ .

Pour cela, prouvons, pour tout $n \in \mathbb{N}$, la propriété \mathcal{H}_n suivante :

$$\text{$ \text{$"$}$ $" est n-fois d\'{e}rivable sur \mathbb{R}^+ et il existe $P_n \in \mathbb{R}[X]$ tel que $f^{(n)}: x \mapsto \begin{cases} P_n\Big(\frac{1}{x}\Big) \exp\Big(\frac{-1}{x}\Big) & \text{si $x > 0$} \\ 0 & \text{sinon} \end{cases} }$$

V. Extension aux fonctions à valeurs complexes

Définition

- dérivabilité en un point, puis dérivabilité sur un intervalle (idem)
- définition des dérivées successives, puis des fonctions de classe \mathscr{C}^k (idem)

Ce qui ne change pas : l'aspect opératoire

50

Proposition (conjugaison). Soit $n \in \mathbb{N} \cup \{\infty\}$. Soit $f : I \to \mathbb{C}$ une fonction.

- La fonction f est dérivable en $a \iff$ la fonction \overline{f} est dérivable en a. Dans ce cas, on a $\overline{f}'(a) = \overline{f'}(a)$.
- Plus généralement, la fonction f est de classe $\mathscr{C}^n \iff$ la fonction \overline{f} est de classe \mathscr{C}^n . Lorsque $n \in \mathbb{N}$, on a

$$\overline{f}^{(n)} = \overline{f^{(n)}}$$
.

- Combinaison linéaire, Produit, Puissance positive.
- · Caractérisation par les parties réelles et imaginaires.
- Passage à l'inverse pour une fonction qui ne s'annule pas.

Ce qui change: les accroissements finis

- Attention. Soit $f:[0,2\pi] \to \mathbb{C}$ définie par $f:x\mapsto \mathrm{e}^{\mathrm{i}x}$. Pour cette fonction, il n'existe pas de réel $c\in]0,2\pi[$ tel que $f(2\pi)-f(0)=2\pi f'(c)$. En effet, $f(2\pi)-f(0)=0$, alors que pour tout $x\in [0,2\pi]$, on a $f'(x)=\mathrm{i}\mathrm{e}^{\mathrm{i}x}\neq 0$.
- **Remarque.** Considérons une fonction $f : [a,b] \to \mathbb{C}$ que l'on écrit f = g + i h avec $g = \operatorname{Re} f$ et $h = \operatorname{Im} f$, et que l'on suppose continue sur [a,b] et dérivable sur]a,b[.

On peut bien sûr appliquer l'égalité des accroissements finis aux fonctions réelles g et h.

On obtient alors des éléments c et d de]a, b[tels que

$$g(b) - g(a) = (b - a) g'(c)$$
 et $h(b) - h(a) = (b - a) h'(d)$

Mais il n'y a évidemment aucune raison pour que c et d soient égaux.

Quelques résultats

51

Proposition. Soit $f: I \to \mathbb{C}$ dérivable.

Alors: f constante sur $I \iff f'$ nulle sur I

52

Proposition (inégalité des accroissements finis). Soit $f: I \to \mathbb{C}$ une fonction de classe \mathscr{C}^1 . S'il existe $K \in \mathbb{R}$ tel que $|f'| \leqslant K$, alors :

$$\forall (x_1, x_2) \in I^2$$
, $|f(x_1) - f(x_2)| \leq K|x_1 - x_2|$.

- **Remarque.** Noter la différence entre l'énoncé de l'inégalité des accroissements finis dans le cas réel et celui dans le cas complexe. Dans le cas réel, on suppose simplement f dérivable sur l'intérieur de I et non de classe \mathscr{C}^1 sur I.
 - Le résultat analogue au cas réel existe mais est hors programme.

Dérivation preuve et éléments de correction

On a l'égalité de nombres réels

$$\forall x \in \mathbb{R}, \quad f(x+T) = f(x)$$

que l'on peut traduire en une égalité de fonctions, à savoir $f \circ \tau = f$ où τ est la fonction $x \mapsto x + T$. On sait que : $\begin{cases} \text{la fonction } \tau \text{ est dérivable sur } \mathbb{R} \text{ (en tant que fonction affine) à valeurs dans } \mathbb{R} \\ \text{la fonction } f \text{ est dérivable sur } \mathbb{R} \text{ (par hypothèse)} \end{cases}$

Par composition, la fonction $f \circ \tau$ est dérivable et $(f \circ \tau)' : x \mapsto \underline{\tau'(x)} \times f'(x+T) = f'(x+T)$.

Reprenons l'égalité $f = f \circ \tau$ et dérivons (licite).

On obtient $f' = (f \circ \tau)'$, donc avec ce qui précède, on en déduit que $f' : x \mapsto f'(x + T)$. Ainsi, f' est T-périodique.

(i) Soit
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

— La fonction est dérivable sur \mathbb{R}^* , par opérations.

Et on a

$$\forall x \in \mathbb{R}^*, \quad f'(x) = 2x \sin\left(\frac{1}{x}\right) + x^2 \times \left(\frac{-1}{x^2}\right) \cos\left(\frac{1}{x}\right) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$$

— En 0, examinons le taux d'accroissement.

On a

$$\forall x \neq 0, \quad \frac{f(x) - f(0)}{x - 0} = \frac{x^2 \sin(\frac{1}{x})}{x} = x \sin(\frac{1}{x})$$

C'est le produit d'une quantité qui tend vers 0 et d'une quantité bornée, donc

$$\frac{f(x) - f(0)}{x - 0} \xrightarrow[x \to 0]{} 0$$

Donc f est dérivable en 0 et f'(0) = 0.

BILAN : f est dérivable sur \mathbb{R} et on a

$$f': \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} 2x\sin(\frac{1}{x}) - \cos(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

(ii) Soit $f: x \mapsto |x| \sin x$ définie sur \mathbb{R} .

— La fonction est dérivable sur \mathbb{R}^* , par opération.

Et on a

$$\forall x \in \mathbb{R}^*, \quad f'(x) = \begin{cases} \sin x + x \cos x & \text{si } x > 0 \\ -(\sin x + x \cos x) & \text{si } x < 0 \end{cases}$$

— En 0, examinons le taux d'accroissement.

On a

$$\forall x \neq 0, \quad \frac{f(x) - f(0)}{x - 0} = \frac{|x| \sin x}{x} = \pm \sin x$$

Comme $\sin x \xrightarrow[x\to 0]{} 0$, on a

$$\frac{f(x) - f(0)}{x - 0} \xrightarrow[x \to 0]{} 0$$

Donc f est dérivable en 0 et f'(0) = 0.

BILAN : f est dérivable sur \mathbb{R} et on a

$$f' \colon \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} \sin x + x \cos x & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ -(\sin x + x \cos x) & \text{si } x < 0 \end{cases}$$

1. Raisonnons par Analyse-Synthèse.

Analyse. Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable de dérivée constante.

Ainsi, il existe $\alpha \in \mathbb{R}$ tel que $f' : x \mapsto \alpha$.

Posons $g: x \mapsto f(x) - \alpha x$. Cette fonction g est dérivable de dérivée nulle (par hypothèse faite sur f).

Comme \mathbb{R} est un intervalle, on en déduit que g est constante.

Donc il existe $\beta \in \mathbb{R}$ tel que $g: x \mapsto \beta$.

Ainsi, $f: x \mapsto \alpha x + \beta$.

Bilan : f est nécessairement de la forme $x \mapsto \alpha x + \beta$.

Synthèse. Soit f une fonction de la forme $x \mapsto \alpha x + \beta$ avec $(\alpha, \beta) \in \mathbb{R}^2$.

Une telle fonction f est dérivable de dérivée constante, en tant que fonction affine.

BILAN: les fonctions cherchées sont les fonctions affines.

2. Raisonnons par Analyse-Synthèse.

Analyse. Soit $f : \mathbb{R} \to \mathbb{R}$ dérivable vérifiant la condition :

$$\forall (x, y) \in \mathbb{R}^2, \ f(x + y) = f(x) + f(y)$$

Soit $y \in \mathbb{R}$. En dérivant par rapport à la variable x (licite car f est dérivable), on a

$$\forall x \in \mathbb{R}, \quad f'(x+y) = f'(x)$$

On a donc obtenu

$$\forall\,x,y\in\mathbb{R},\quad f'(x+y)=f'(x)$$

En particulier, pour x = 0, on a

$$\forall y \in \mathbb{R}, \quad f'(y) = f'(0)$$

Donc f' est constante.

Ainsi, d'après la question précédente, f est de la forme $x \mapsto \alpha x + \beta$.

En injectant cette information dans l'égalité "initiale", on a

$$\forall x, y \in \mathbb{R}, \quad \alpha(x+y) + \beta = \alpha x + \beta + \alpha y + \beta$$

En prenant, x = y = 0, on a $\beta = 2\beta$, d'où $\beta = 0$.

Bilan : f est nécessairement de la forme $x \mapsto \alpha x$.

Synthèse. On vérifie facilement qu'une fonction du type $x \mapsto \alpha x$ est solution du problème (dérivable et vérifiant la condition annoncée).

BILAN: les fonctions cherchées sont les fonctions linéaires, c'est-à-dire du type $x \mapsto \alpha x$.

La fonction f est définie et continue sur $[0, +\infty[$.

Elle est dérivable sur $]0, +\infty[$ et on a :

$$f': x \longmapsto \frac{1}{2\sqrt{x}} - \frac{1}{1+x} = \frac{(1-\sqrt{x})^2}{2(1+x)\sqrt{x}}$$

On en déduit le tableau :

X	0		1		+∞
f'(x)		+	0	+	
f	0 —				→ ∞

Par récurrence sur n où \mathcal{H}_n

$$\forall \varphi \in \mathcal{D}^n(I,\mathbb{R}), \quad \left(\varphi^{(n)} = 0 \implies \varphi \in \operatorname{Poly}_{n-1}(I,\mathbb{R})\right)$$

Erfann Daghighi (année 2023-2024, promo 2025) me propose de supposer une fois pour toutes $\varphi^{(n)}=0$ et de prouver par récurrence finie

$$\forall k \in [0, n], \quad \varphi^{(n-k)} \in \text{Poly}_{k-1}(I, \mathbb{R})$$

ou encore par récurrence descendante :

$$\forall j \in [0, n], \quad \varphi^{(j)} \in \text{Poly}_{n-j-1}(I, \mathbb{R})$$

Par récurrence. Dans l'hérédité, monter n marches avec \mathcal{H}^n . Puis terminer à la main la dernière marche! En utilisant la linéarité de la dérivation.

Idée. Par récurrence. Dans l'hérédité, monter n marches avec \mathcal{H}^n . Puis terminer à la main la dernière marche! En utilisant la linéarité de la dérivation et le fait que l'on sait dériver un produit.

Preuve. Montrons, par récurrence, que

$$\forall n \in \mathbb{N}, \qquad \underbrace{f, g \in \mathcal{D}^n \quad \Longrightarrow \quad fg \text{ est } n\text{-fois dérivable et } \left(fg\right)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)} g^{(n-k)}}_{\mathcal{H}_n}$$

Initialisation. On a \mathcal{H}_0 (WHY?)

Hérédité. Soit $n \in \mathbb{N}$ tel que \mathcal{H}_n .

Montrons \mathcal{H}_{n+1} , donc supposons que f et g sont (n+1)-fois dérivables.

A fortiori, f et g sont n-fois dérivables.

On peut donc appliquer \mathcal{H}_n .

Ainsi, la fonction fg est n-fois dérivable et

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$$

La fonction $(fg)^{(n)}$ est une combinaison linéaire des fonctions $f^{(k)}g^{(n-k)}$.

Pour tout $k \in [0, n]$, les fonctions $f^{(k)}$ et $g^{(n-k)}$ sont dérivables (WHY). Leur produit est donc dérivable. Par linéarité de la dérivation, cette combinaison linéaire est dérivable, autrement dit $(fg)^{(n)}$ est dérivable et

$$\begin{split} &((fg)^{(n)})' &= \sum_{k=0}^{n} \binom{n}{k} \left(f^{(k+1)} g^{(n-k)} + f^{(k)} g^{(n-k+1)} \right) \\ &= \sum_{k=0}^{n} \binom{n}{k} f^{(k+1)} g^{(n-k)} + \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k+1)} \\ &= \left(f^{(n+1)} + \sum_{k=0}^{n-1} \binom{n}{k} f^{(k+1)} g^{(n-k)} \right) + \left(\sum_{k=1}^{n} \binom{n}{k} f^{(k)} g^{(n-k+1)} + g^{(n+1)} \right) \\ &= \sum_{i=1}^{n} \binom{n}{i-1} f^{(i)} g^{(n-i+1)} \\ &= f^{(n+1)} + \sum_{k=1}^{n} \left[\binom{n}{k-1} + \binom{n}{k} \right] f^{(k)} g^{(n-k+1)} + g^{(n+1)} \\ &= \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(k)} g^{(n+1-k)} \end{split}$$

Ainsi, f est (n+1)-fois dérivable et on a $f^{(n+1)} = \sum_{k=0}^{n+1} \binom{n+1}{k} f^{(k)} g^{(n+1-k)}$. D'où \mathcal{H}_{n+1} .

Preuve par récurrence.

Au sein de l'hérédité, on ne monte d'abord qu'une seule marche via

$$(g \circ f)' = (g' \circ f) \times f'$$

pour ensuite terminer avec \mathcal{H}_n et un produit de fonctions \mathcal{D}^n .

Comme f ne s'annule pas et est continue, le TVI affirme que f est à valeurs dans $]-\infty,0[$ ou à valeurs dans $]0,+\infty[$.

Il y a deux cas à traiter.

Terminer par composition avec la fonction inverse.