## Convexité

| I Du vocabulaire et des résultats « élémentaires » | 2 |
|----------------------------------------------------|---|
| II Fonctions convexes et fonctions concaves        | 4 |
| Inégalité de convexité généralisée (HP)            |   |
| III Caractérisation de la convexité                | 7 |
| IV Des inégalités                                  | 9 |
| V Extremums locaux et point d'inflexion            | 9 |



#### I. Du vocabulaire et des résultats « élémentaires »

#### 1 Définition.

Soit  $a, b \in \mathbb{R}$ .

- Une combinaison *linéaire* de a et b est un nombre réel qui est de la forme  $\lambda a + \mu b$  avec  $\lambda, \mu \in \mathbb{R}$ .
- Une combinaison *convexe* de a et b est un nombre réel qui est de la forme  $\lambda a + \mu b$  avec  $\lambda, \mu$  positifs de somme 1.
- **Exemple.** Le nombre 3 est combinaison *linéaire* de 70 et 71, WHY? Mais 3 n'est pas combinaison *convexe* de 70 et 71!

#### **Proposition.** Soit $a < b \in \mathbb{R}$ .

L'ensemble des combinaisons convexes de *a* et *b* est l'ensemble des réels du segment [*a*, *b*].

On a les trois égalités :

(G) 
$$[a,b] = \{x \in \mathbb{R} \mid \exists t \in [0,1], x = (1-t)a + tb\}$$

(M) 
$$[a,b] = \{x \in \mathbb{R} \mid \exists \lambda, \mu \text{ positifs de somme 1, } x = \lambda a + \mu b \}$$

**(D)** 
$$[a,b] = \left\{ x \in \mathbb{R} \mid \exists s \in [0,1], \ x = sa + (1-s)b \right\}$$

• **Vocabulaire.** On dit que (1-t)a+tb est une paramétrisation du segment [a,b] (et t est le paramètre, on peut y penser comme un temps).

Il est bon de voir la quantité (1-t)a+tb comme une expression affine de t via a+t(b-a).

• Trois expressions explicites. Au cours de la preuve précédente, on a vu qu'un réel  $x \in [a, b]$  s'écrit de manière explicite comme combinaison convexe de a et b.

Il y a trois expressions:

(G) 
$$x = \left(1 - \frac{x - a}{b - a}\right)a + \frac{x - a}{b - a}b$$

(M) 
$$x = \frac{b-x}{b-a}a + \frac{x-a}{b-a}b$$

$$(\mathbf{D}) \qquad x = \frac{b-x}{b-a}a + \left(1 - \frac{b-x}{b-a}\right)b$$

#### **Proposition.** Soit I un intervalle.

— On a:

 $\forall a, b \in I$ ,  $\forall \lambda, \mu$  réels positifs de somme 1,  $\lambda a + \mu b \in I$ 

— On a:

$$\forall n \in \mathbb{N}^*, \quad \forall x_1, ..., x_n \in I, \quad \forall \lambda_1, ..., \lambda_n \text{ réels positifs de somme 1, } \sum_{i=1}^n \lambda_i x_i \in I$$

Autrement dit, un intervalle est stable par combinaison convexe finie.

On dit qu'un intervalle est une partie convexe de  $\mathbb{R}$ .

3



#### Petit lemme géométrique.

Soit  $a < b \in \mathbb{R}$  et  $\alpha, \beta \in \mathbb{R}$ .

On considère les deux points du plan suivants  $A(a, \alpha)$  et  $B(b, \beta)$ .

- i) Soit  $x_0$  un réel de [a, b] que l'on écrit  $x_0 = a + t_0(b a)$  avec  $t_0 \in [0, 1]$ . Le point d'abscisse  $x_0$  appartenant à [AB] a pour ordonnée  $y_0 = \alpha + t_0(\beta - \alpha)$ .
- ii) Soit x un réel de [a, b] que l'on écrit  $x = \lambda a + \mu b$  avec  $\lambda, \mu$  positifs de somme 1. Le point d'abscisse x appartenant à [AB] a pour ordonnée  $\lambda \alpha + \mu \beta$ .
- iii) Supposons A et B sur la courbe d'une fonction f de sorte que  $\alpha = f(a)$  et  $\beta = f(b)$ . Soit x un réel de [a,b] que l'on écrit  $x = \lambda a + \mu b$  avec  $\lambda, \mu$  positifs de somme 1. Le point d'abscisse x appartenant à [AB] a pour ordonnée  $\lambda f(a) + \mu f(b)$ .



### II. Fonctions convexes et fonctions concaves Définition

5

**Définition (fonction convexe).** Soit  $f: I \to \mathbb{R}$  où I est un intervalle.

On dit que f est convexe sur I lorsque

$$\forall a, b \in I, \forall \lambda, \mu \text{ réels positifs de somme 1}, f(\lambda a + \mu b) \leq \lambda f(a) + \mu f(b)$$

ou encore

$$\forall a, b \in I, \quad \forall \lambda \in [0, 1], \quad f(\lambda a + (1 - \lambda)b) \leq \lambda f(a) + (1 - \lambda)f(b)$$

L'image par f d'une combinaison convexe de a et b est inférieure à cette même combinaison convexe des images de a et b

Graphiquement, f est convexe lorsque  $\mathscr{C}_f$  est en-dessous de ses cordes.

#### • Remarque.

L'inégalité étant symétrique en a et b, on peut supposer  $a \leq b$ .

Pour a = b, l'inégalité est toujours vérifiée.

Pour  $\lambda = 0$  et  $\lambda = 1$ , l'inégalité est également toujours vérifiée.

#### Conséquence.

Pour montrer qu'une fonction est convexe, il suffit d'établir l'inégalité dans le cas où a < b et  $\lambda \in ]0,1[$ . Cette remarque n'est utile que lorsque les cas extrêmes seraient à traiter à part (et du coup, n'ont pas besoin d'être traités du tout!).

• **Définition équivalente.** Une fonction  $f: I \to \mathbb{R}$  est convexe sur I lorsque

$$\forall a < b \in I, \quad \forall x \in [a, b], \quad f(x) \leqslant \frac{b - x}{b - a} f(a) + \frac{x - a}{b - a} f(b)$$

Trois définitions équivalentes, avec taux d'accroissement.

Soit  $f: I \to \mathbb{R}$ .

Pour  $c \in I$ , on rappelle que la fonction taux d'accroissement de f en c est  $\tau_c$ :  $I \setminus \{c\} \longrightarrow \mathbb{R}$   $t \longmapsto \frac{f(t) - f(c)}{t - c}$ 

La fonction f est convexe sur I lorsque l'une des trois assertions suivantes est vérifiée :

(G) 
$$\forall a < x < b \in I$$
,  $f(x) \leqslant \left(1 - \frac{x - a}{b - a}\right) f(a) + \frac{x - a}{b - a} f(b)$  ce qui s'écrit aussi  $\tau_a(x) \leqslant \tau_a(b)$ 

(M) 
$$\forall a < x < b \in I$$
,  $f(x) \leqslant \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b)$  ce qui s'écrit aussi  $\tau_x(a) \leqslant \tau_x(b)$ 

**(D)** 
$$\forall a < x < b \in I, \quad f(x) \leqslant \frac{b-x}{b-a}f(a) + \left(1 - \frac{b-x}{b-a}\right)f(b)$$
 ce qui s'écrit  $\tau_b(a) \leqslant \tau_b(x)$ 



#### Lemme des 3 pentes.

Soit  $f:I\to\mathbb{R}$  convexe. Illustrer l'inégalité dite des 3 pentes :

$$\forall \, a < b < c \in I, \qquad \frac{f(b) - f(a)}{b - a} \; \leqslant \; \frac{f(c) - f(a)}{c - a} \; \leqslant \; \frac{f(c) - f(b)}{c - b}$$
 
$$\tau_a(b) \quad \leqslant \quad \tau_a(c)$$
 
$$\tau_b(a) \quad \leqslant \quad \tau_c(a) \quad \leqslant \quad \tau_c(b)$$

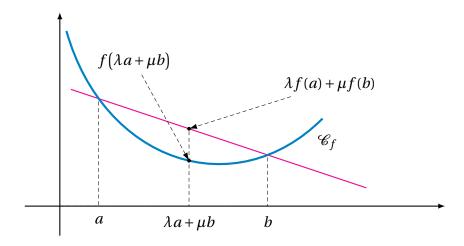
7

#### **Proposition (interprétation géométrique).** Soit $f: I \to \mathbb{R}$ convexe.

Soit *A*, *B* deux points de  $\mathcal{C}_f$  d'abscisses a < b.

Alors:

- le graphe de  $f_{|I\cap|-\infty,a|}$  est situé au-dessus de la droite (AB)
- le graphe de  $f_{|_{[a,b]}}$  est situé en dessous de [AB]
- le graphe de  $f_{|I\cap[b,+\infty[}$  est situé au-dessus de la droite (AB)



#### • Reformulation « algébrique » de l'énoncé. On a

(a au milieu) 
$$\forall x \in I$$
,  $x < a < b \implies f(x) \geqslant \tau_a(b)(x-a) + f(a)$  càd  $\tau_a(x) \leqslant \tau_a(b)$ 

(x au milieu) 
$$\forall x \in I$$
,  $a < x < b \implies f(x) \leqslant \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b)$  càd  $\tau_x(a) \leqslant \tau_x(b)$ 

(b au milieu) 
$$\forall x \in I$$
,  $a < b < x \implies f(x) \geqslant \tau_b(a)(x-b) + f(b)$  càd  $\tau_b(a) \leqslant \tau_b(x)$ 

#### • Preuve.

Le plus simple est de montrer l'inégalité sur les taux d'accroissements.

On voit que la lettre en indice est celle qui est « au milieu » des deux autres.

Ainsi, il suffit de prendre, à trois reprises, la formulation (M) de la page précédente!

8

#### Définition (fonction concave).

Soit  $f: I \to \mathbb{R}$  où I est un intervalle.

On dit que f est concave sur I lorsque -f est convexe sur I.

9

#### Proposition (fonctions usuelles, 1ère passe).

- Une fonction affine est convexe et concave sur  $\mathbb{R}$ .
- La fonction valeur absolue est convexe sur  $\mathbb{R}$ .
- La fonction carré est convexe sur  $\mathbb{R}$ .

#### **Opérations**

- **Somme.** Si f et g sont convexes, alors f + g est convexe.
- Multiplication par un scalaire. Si f est convexe, alors  $\lambda f$  ne l'est pas forcément.
- Produit. Le produit de deux fonctions convexes ne l'est pas forcément.
- Composée. La composée de deux fonctions convexes ne l'est pas forcément.
- **Réciproque.** La réciproque d'une bijection convexe n'est pas nécessairement concave.

#### Inégalité de convexité généralisée (HP)



Proposition (inégalité de convexité généralisée / inégalité de Jensen). Soit  $f:I\to\mathbb{R}$  convexe. Alors

 $\forall n \in \mathbb{N}^*, \quad \forall x_1, \dots, x_n \in I, \quad \forall \lambda_1, \dots, \lambda_n \text{ réels positifs de somme 1,} \quad f\left(\sum_{i=1}^n \lambda_i x_i\right) \leqslant \sum_{i=1}^n \lambda_i f(x_i)$ 

- **Idem.** Énoncé analogue avec f concave.
- Exemple.

La convexité de  $x \mapsto x^2$  nous permet d'écrire (WHY?) :

$$\forall x_1, \dots, x_n \in \mathbb{R}, \quad \left(\frac{1}{n} \sum_{i=1}^n x_i\right)^2 \leqslant \frac{1}{n} \sum_{i=1}^n x_i^2 \quad \text{donc} \quad \left(\sum_{i=1}^n x_i\right)^2 \leqslant n \sum_{i=1}^n x_i^2.$$

Par exemple,  $\forall a, b, c \in \mathbb{R}$ ,  $(a+b+c)^2 \le 3(a^2+b^2+c^2)$ .

Pour vous amuser, essayez de prouver cette dernière assertion avec des outils de Terminale.

#### III. Caractérisation de la convexité

#### Pour une fonction quelconque

11

**Proposition (croissance des pentes).** Soit  $f: I \to \mathbb{R}$  quelconque. On a :

f convexe sur  $I \iff \forall a \in I$ , la fonction  $\tau_{f,a}$  est croissante sur  $I \setminus \{a\}$ 

• **Remarque.** La conclusion est forte : il s'agit bien de la croissance de  $\tau_{f,a}$  sur  $I \setminus \{a\}$  et *pas seulement* de sa croissance sur chacun des deux intervalles  $I \cap ]-\infty$ , a[ et  $I \cap ]a, +\infty[$ .

Rien à voir. La fonction inverse est décroissante sur  $]-\infty,0[\,\cup\,]0,+\infty[$ , mais n'est pas décroissante sur  $\mathbb{R}\setminus\{0\}$ .

- Preuve.
  - Supposons f convexe. Soit  $a \in I$  et montrons que  $\tau_a$  est croissante sur  $I \setminus \{a\}$ . Soit  $x_1 < x_2 \in I \setminus \{a\}$ .

Il y a trois implications à montrer :

(*a* à droite) 
$$x_1 < x_2 < a \implies \tau_a(x_1) \le \tau_a(x_2)$$

(*a* au milieu) 
$$x_1 < a < x_2 \implies \tau_a(x_1) \leqslant \tau_a(x_2)$$

(a à gauche) 
$$a < x_1 < x_2 \implies \tau_a(x_1) \leqslant \tau_a(x_2)$$

Ces trois implications résultent respectivement de (D), (M) et (G).

Supposons que pour tout  $x \in I$ , la fonction  $\tau_x$  est croissante sur  $I \setminus \{x\}$ .

D'après (M), la fonction f est convexe sur I si et seulement si

$$\forall a < x < b \in I, \quad \tau_x(a) \leqslant \tau_x(b)$$

ce qui est vérifié d'après l'hypothèse.

#### Régularité des fonctions convexes (HORS PROGRAMME)



**Proposition** (HP). Soit  $f: I \to \mathbb{R}$  quelconque. Soit a un point intérieur à I. Si f est convexe, alors f est dérivable à droite et à gauche au point  $a \in \mathring{I}$  et  $f'_g(a) \leqslant f'_d(a)$ .

- **Continuité sur l'intérieur.** On en déduit alors qu'une fonction convexe sur *I* est continue en tout point intérieur à *I*.
- Discontinuité. Il existe des fonctions convexes discontinues.

La fonction 
$$f: [0,1] \longrightarrow \mathbb{R}$$
 est convexe sur  $[0,1]$  et discontinue en  $1$ .  $x \longmapsto \begin{cases} x^2 & \text{si } x \in [0,1[ \\ 3 & \text{si } x = 1 \end{cases}$ 

Considèrons  $g: x \mapsto x^2$  convexe sur [0,1]. Les fonctions g et f coı̈ncident sur [0,1[ et  $g \leq f$ .

Montrons que f est convexe sur [0,1]. Soit  $(x,y) \in [0,1]^2$  tel que x < y et  $\lambda \in ]0,1[$ . On a :

$$f(\lambda x + (1 - \lambda) y) = g(\lambda x + (1 - \lambda) y) \quad \text{car } \lambda x + (1 - \lambda) y \in [0, 1]$$

$$\leqslant \lambda g(x) + (1 - \lambda) g(y) \quad \text{car } g \text{ est convexe}$$

$$= \lambda f(x) + (1 - \lambda) g(y) \quad \text{car } x \in [0, 1]$$

$$\leqslant \lambda f(x) + (1 - \lambda) f(y) \quad \text{car } g \leqslant f \text{ et } 1 - \lambda \geqslant 0$$

#### Pour une fonction dérivable

13

**Proposition (croissance de la dérivée).** Soit  $f:I\to\mathbb{R}$  une fonction dérivable.

On a:

f convexe sur  $I \iff f'$  croissante sur I

• Encore une double inégalité. Au cours de la preuve, on a vu que si f est une fonction convexe dérivable, alors pour tout a < b:

 $f'(a) \leqslant \frac{f(b) - f(a)}{b - a} \leqslant f'(b),$ 

résultat très facile à retrouver sur un dessin.

• **Remarque.** La réciproque nécessite en fait seulement la continuité sur I et la dérivabilité sur  $\mathring{I}$ . On peut montrer que si f est continue sur I, dérivable sur  $\mathring{I}$  de dérivée croissante, alors f est convexe sur I.



#### Proposition (fonctions usuelles, 2ème passe, énoncé non exhaustif).

- La fonction exponentielle est convexe sur  $\mathbb{R}$ .
- La fonction logarithme népérien est concave sur  $]0, +\infty[$ .
- La fonction racine carrée est concave sur  $\mathbb{R}^+$ .
- La fonction Arcsinus est convexe sur [0, 1].

15 preuve

#### **Proposition (position de la tangente).** Soit $f: I \to \mathbb{R}$ dérivable et convexe.

Alors

$$\forall a \in I, \ \forall x \in I, \ f(x) \geqslant f'(a)(x-a) + f(a)$$

En français :  $Si\ f$  est convexe, alors  $\mathscr{C}_f$  est au-dessus de ses tangentes.

**16** 

#### Proposition (inégalités de convexité).

- $\star \ \forall x \in \mathbb{R}, \quad e^x \geqslant x+1$
- $\star \forall x > -1, \quad \ln(1+x) \leqslant x$
- $\star \ \forall x \in \mathbb{R}, \ |\sin x| \leq |x|$

#### Pour une fonction deux fois dérivable

17

#### **Proposition (positivité de la dérivée seconde).** Soit $f: I \to \mathbb{R}$ deux fois dérivable. On a :

f convexe sur  $I \iff f''$  positive sur I

- 18
- **Question.** Considérons la fonction  $f: x \mapsto x^x$  définie sur  $]0, +\infty[$ .

Étudier sa convexité/concavité sur  $]0, +\infty[$ .

Puis tracer l'allure de  $\mathscr{C}_f$ .

- 10
  - **Question.** Soit  $f: x \mapsto e^{-x^2}$  définie sur  $\mathbb{R}$ .

Dresser un tableau de « convexité/concavité » pour f sur  $\mathbb{R}$  (du même style qu'un tableau de signe en classe de Seconde).

Dresser un tableau de variations pour f sur  $\mathbb{R}$ .

Puis tracer l'allure de  $\mathcal{C}_f$ .



#### Des inégalités

Question. Montrer les inégalités suivantes et les illustrer!

$$\star \forall x \in [1, e], \quad \ln x \geqslant \frac{x-1}{e-1}$$

$$\star \ \forall x \in \left[0, \frac{\pi}{2}\right], \quad \frac{2}{\pi} x \leqslant \sin x$$

Question.

Soit a et b deux réels positifs et  $(p,q) \in (\mathbb{R}_+^*)^2$  tel que  $\frac{1}{p} + \frac{1}{q} = 1$ .

Montrer l'inégalité de Young

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$$
.

Question (Différentes moyennes pour n = 2).

Soit  $x_1$  et  $x_2$  deux réels strictement positifs et  $\lambda_1, \lambda_2 \geqslant 0$  de somme 1. On pose

$$A = \lambda_1 x_1 + \lambda_2 x_2, \quad G = x_1^{\lambda_1} x_2^{\lambda_2}, \quad H = \left(\lambda_1 \frac{1}{x_1} + \lambda_2 \frac{1}{x_2}\right)^{-1}, \quad Q = \sqrt{\lambda_1 x_1^2 + \lambda_2 x_2^2}$$

Montrer que  $G \leq A$  puis  $A \leq Q$  puis  $H \leq A$  et enfin  $H \leq G$ .

#### Extremums locaux et point d'inflexion

Définition (extremum local). **23** 

Soit  $f: I \to \mathbb{R}$  et  $a \in \mathring{I}$  un point intérieur à I.

On dit que a est un extremum local de f lorsque

la quantité f(x) - f(a) garde un signe constant au voisinage de a.

Graphiquement,  $\mathscr{C}_f$  est d'un même côté que la droite (horizontale) d'équation y = f(a)

**Lemme de l'extremum local en un point intérieur.** Pour f dérivable en  $a \in \mathring{I}$ , on a :

f admet un extremum local en  $a \in \mathring{I}$ 

Attention la réciproque est fausse : penser à  $f: x \mapsto x^3$  pour a = 0.

Définition (point d'inflexion). 25

Soit  $f: I \to \mathbb{R}$  dérivable en a point intérieur de I. On note  $\mathbb{T}_a(x) = f'(a)(x-a) + f(a)$ .

On dit que a est un point d'inflexion de f lorsque

la quantité  $f(x) - \mathbb{T}_a(x)$  change de signe au voisinage de a (passe de négatif à positif, ou le contraire)

Graphiquement,  $\mathscr{C}_f$  est traversée par sa tangente en a (au voisinage de a).

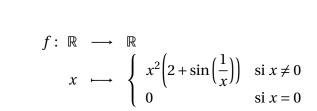
**Lemme du point d'inflexion en un point intérieur.** Pour f deux fois dérivable en  $a \in \mathring{I}$ , on a : 26

> f admet un point d'inflexion en  $a \in \mathring{I}$ f''(a) = 0

Attention la réciproque est fausse : penser à  $f: x \mapsto x^4$  pour a = 0.

• On aurait tendance à penser que si une fonction admet un minimum local en a, alors f' est négative au voisinage gauche de a et positive au voisinage droit de a. Il n'en est rien.

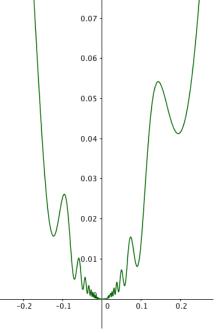
Voici l'exemple d'une fonction dérivable ayant un minimum en a = 0 et dont la dérivée n'est pas négative à gauche de a et n'est pas positive à droite de a.



Cette fonction est dérivable sur  $\mathbb{R}^*$  et dérivable en 0 (WHY?) et

$$\forall x \in \mathbb{R}^*, \quad f'(x) = -\cos\left(\frac{1}{x}\right) + 2x\sin\left(\frac{1}{x}\right) + 4x$$

Vous vérifierez que  $f'\left(\frac{1}{2n\pi}\right) \le 0$  et  $f'\left(\frac{1}{2n\pi + \frac{\pi}{2}}\right) \ge 0$ , donc f' ne garde pas un signe constant au voisinage de  $0^+$ .



• On aurait tendance à penser que si une fonction admet un point d'inflexion en a, alors f'' est d'un certain signe au voisinage gauche de a et de l'autre signe au voisinage droit de a. Il n'en est rien.

Voici l'exemple d'une fonction f deux fois dérivable ayant un point d'inflexion en a = 0 (la courbe est en-dessous puis au dessus de la tangente en a), mais pourtant f'' n'est pas négative à gauche de a et n'est pas positive à droite de a.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

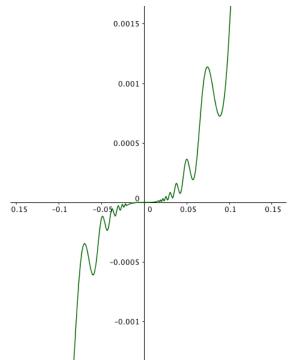
$$x \longmapsto \begin{cases} x^3 \left(2 + \sin\left(\frac{1}{x}\right)\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

$$\forall x \in \mathbb{R}^*, \ f'(x) = -x \cos\left(\frac{1}{x}\right) + 3x^2 \left(\sin\left(\frac{1}{x}\right) + 2\right)$$

$$\forall x \in \mathbb{R}^*, \ f''(x) = -4\cos\left(\frac{1}{x}\right) + 6x\left(\sin\left(\frac{1}{x}\right) + 2\right) - \frac{1}{x}\sin\left(\frac{1}{x}\right)$$

Vous vérifierez que  $f''\Bigl(\frac{1}{2n\pi}\Bigr)\leqslant 0$  et  $f''\Bigl(\frac{1}{2n\pi+\frac{\pi}{2}}\Bigr)\geqslant 0$ ,

donc f'' ne garde pas un signe constant au voisinage de  $0^+$ .



# Convexité preuve et éléments de correction



On peut faire une preuve par récurrence « à la Jensen ».

On peut aussi considérer un indice m et M tels que  $x_m = \min x_i$  et  $x_M = \max x_i$ .

On a donc  $x_m \leqslant x_i \leqslant x_M$ . On multiplie par  $\lambda_i$  et on somme.

On obtient

$$\sum_{i=1}^{n} \lambda_i x_i \in [x_m, x_M]$$
 segment qui est inclus dans  $I$ 



i) L'équation de la droite (*AB*) est  $y = \frac{\beta - \alpha}{b - a}(x - a) + \alpha$ .

D'où 
$$y_0 = \frac{\beta - \alpha}{b - a}(x_0 - a) + \alpha$$
.

Or  $x_0 = a + t_0(b - a)$  d'où le résultat.

- ii) On applique le point précédent en remarquant que x s'écrit x = a + t(b a) avec  $t = \mu$ . Ainsi, l'ordonnée cherchée vaut  $a + \mu(b - a) = \lambda a + \mu b$ .
- iii) C'est un cas particulier du cas précédent. On trouve que l'ordonnée est  $\lambda \alpha + \mu \beta$ .



**Note pour MOI.** Fixons  $a < b < c \in I$ . Montrons  $\frac{f(b) - f(a)}{b - a} \le \frac{f(c) - f(a)}{c - a}$ Si je m'appuie sur b, c'est-à-dire si je veux taper sur  $\tau_b$ , alors j'obtiendrai seulement une inégalité faisant

intervenir les extrémités, à savoir  $\tau_h(a) \leq \tau_h(c)$ .

Donc mieux vaut s'appuyer sur a ou c. Disons a.

Montrons que  $\tau_a(b) \le \tau_a(c)$ : ce qui est la première inégalité du lemme des 3 pentes.

On montre donc en quelque sorte que la fonction  $\tau_a$  est croissante sur  $I \cap ]a, +\infty[$ .

#### Première tentative de preuve.

Fixons  $a < b < c \in I$ .

Comme  $b \in [a, c]$ , on a  $b = \frac{c - b}{c - a}a + \frac{b - a}{c - a}c$ .

De plus, f est convexe, done

$$f(b) \leqslant \frac{c-b}{c-a}f(a) + \frac{b-a}{c-a}f(c)$$

On veut faire apparaître  $\frac{f(c)-f(a)}{c-a}$  donc on peut faire intervenir  $\frac{b-a}{c-a}(f(c)-f(a))$ . On a :

$$f(b) \leqslant \left(\frac{c-b}{c-a} + \frac{b-a}{c-a}\right) f(a) + \frac{b-a}{c-a} \left(f(c) - f(a)\right)$$

D'où

$$f(b) \leqslant \underbrace{\frac{c-a}{c-a}}_{-1} f(a) + \frac{b-a}{c-a} (f(c) - f(a))$$

On termine en mettant des termes à gauche et en divisant par b-a>0.

A posteriori, on voit que l'on aurait aussi pu dire : on veut faire intervenir f(a) à deux reprises (à gauche et à droite de l'inégalité), donc écrivons le poids devant f(a) comme étant 1 – truc.

#### Deuxième tentative (mieux!).



#### Preuve.

Fixons  $a < b < c \in I$ .

• Montrons l'inégalité de gauche.

Comme 
$$b \in [a, c]$$
, on a  $b = \left(1 - \frac{b - a}{c - a}\right)a + \frac{b - a}{c - a}c$ .

De plus, f est convexe, donc

$$f(b) \leqslant \left(1 - \frac{b-a}{c-a}\right)f(a) + \frac{b-a}{c-a}f(c)$$

D'où  $f(b) - f(a) \le \frac{b-a}{c-a} (f(c) - f(a))$ . D'où l'inégalité de gauche en divisant par b-a > 0.

• Pour montrer l'autre inégalité, on procède de la même façon, mais cette fois-ci, on écrit  $b \in [a, c]$  sous la forme  $b = \frac{c-b}{c-a}a + \left(1 - \frac{c-b}{c-a}\right)c$ .

$$f(b) \leqslant \frac{c-b}{c-a}f(a) + \left(1 - \frac{c-b}{c-a}\right)f(c)$$

D'où 
$$\frac{c-b}{c-a} \big( f(c) - f(a) \big) \leqslant f(c) - f(b)$$
.  
D'où l'inégalité de droite en divisant par  $c-b>0$ .



Soit  $n \in \mathbb{N}^*$  tel que  $\mathcal{H}_n$ .

Montrons  $\mathcal{H}_{n+1}$ .

On fixe  $y_1, ..., y_{n+1} \in I$  et  $\mu_1, ..., \mu_{n+1}$  positifs de somme 1.

On a

$$f\left(\sum_{i=1}^{n+1} \mu_i y_i\right) = f\left(\sum_{i=1}^{n} \mu_i y_i + \mu_{n+1} y_{n+1}\right)$$

Cas où  $\mu_{n+1} = 1$ . C'est facile.

Sinon, on pose  $\lambda_i = \frac{\mu_i}{1 - \mu_{n+1}}$ .

On commence par utiliser la définition de la convexité, puis on utilise  $\mathcal{H}_n$ .



#### POUR MOI : il serait plus intelligent de démarrer par le lemme des 3 pentes, pour en déduire cette proposition.

On allège les notations : on notera  $\tau_a$  la fonction  $\tau_{f,a}$ .

 $\Longrightarrow$  Supposons f convexe. Fixons  $a \in I$ . Montrons que  $\tau_a$  est croissante sur  $I \setminus \{a\}$ .

Pour cela, on se donne x < y dans  $I \setminus \{a\}$  et on veut montrer que  $\tau_a(x) \leqslant \tau_a(y)$ .

On a l'équivalence

$$\tau_a(x) \leqslant \tau_a(y) \quad \Longleftrightarrow \quad \frac{f(x) - f(a)}{x - a} \leqslant \frac{f(y) - f(a)}{y - a}$$

Pour montrer l'inégalité ci-dessus, il est bon de connaître le signe de x - a et y - a.

Il y a donc 3 cas à distinguer.

Traitons le cas où a < x < y (je vous laisse les deux autres).

Raisonnons par équivalences successives

$$\tau_{a}(x) \leqslant \tau_{a}(y) \iff \frac{f(x) - f(a)}{x - a} \leqslant \frac{f(y) - f(a)}{y - a}$$

$$\stackrel{\text{WHY}}{\iff} (y - a) (f(x) - f(a)) \leqslant (x - a) (f(y) - f(a))$$

$$\stackrel{\text{WHY}}{\iff} f(x) \leqslant \frac{y - x}{y - a} f(a) + \frac{x - a}{y - a} f(y)$$



Comme f est convexe, cette dernière assertion est vraie (WHY?).

 $\leftarrow$  Supposons que  $\forall a \in I$ , la fonction  $\tau_{f,a}$  est croissante sur  $I \setminus \{a\}$ .

Montrons que f est convexe. Fixons  $x, y \in I$  et  $\lambda, \mu$  positifs de somme 1.

Quitte à intervertir les rôles joués par x et y, on peut supposer que  $x \le y$  et même x < y (car le cas x = y est immédiat).

On veut montrer que  $f(\lambda x + \mu y) \leq \lambda f(x) + \mu f(y)$ .

On pose 
$$c = \lambda x + \mu y$$
 de sorte que  $x < c < y$  et  $\lambda = \frac{y - c}{y - x}$  et  $\mu = \frac{c - x}{y - x}$ .

Raisonnons par équivalences successives

$$f(\lambda x + \mu y) \leqslant \lambda f(x) + \mu f(y) \iff f(c) \leqslant \frac{y - c}{y - x} f(x) + \frac{c - x}{y - x} f(y)$$

$$\iff (y - x) f(c) \leqslant (y - c) f(x) + (c - x) f(y)$$

$$\iff \frac{f(c) - f(x)}{c - x} \leqslant \frac{f(y) - f(c)}{y - c}$$

$$\iff \tau_c(x) \leqslant \tau_c(y)$$

L'assertion finale est vraie (car par hypothèse, la fonction  $\tau_c$  est croissante). Donc l'assertion initiale est également vraie.

12

Par convexité de f, on a :

$$\forall x, y \in I \setminus \{a\}, \quad x < a < y \implies \tau_a(x) \leqslant \tau_a(y)$$

Ou encore

$$\forall x \in I \cap ]-\infty, a[, \forall y \in I \cap ]a, +\infty[, \tau_a(x) \leq \tau_a(y)$$

On va passer à la limite (sur *x*, puis sur *y*) mais avant il faut justifier que les limites existent et sont finies.

• Montrons que f est dérivable à gauche en a.

Cela revient à montrer que la limite en  $a^-$  de  $\frac{f(x) - f(a)}{x - a}$  existe et est finie.

Cela revient à montrer que la limite en a de la fonction  $(\tau_a)_{|_{I\cap]-\infty,a[}}$  existe et est finie.

Prenons un y dans  $I \cap ]a, +\infty[$  (il existe, car a est intérieur à I) que l'on fixe une fois pour toutes. On a donc

$$\forall x \in I \cap ]-\infty, a[, \tau_a(x) \leqslant \tau_a(y)$$

La fonction  $\tau_a$  restreinte à  $I \cap ]-\infty$ , a[ est croissante.

D'après le théorème de la limite monotone, cette fonction  $(\tau_a)_{|I\cap]-\infty,a[}$  admet une limite en a (qui est l'extrémité droite de  $I\cap]-\infty,a[)$  : cette limite est finie (si cette fonction est majorée) et  $+\infty$  sinon.

Or ici on voit que  $(\tau_a)_{|_{I\cap]-\infty,a[}}$  est majorée par  $\tau_a(y)$ .

Donc la limite de  $(\tau_a)_{|_{I\cap]-\infty,a[}}$  en a existe et est finie.

Cela signifie exactement que la fonction f est dérivable à gauche en a.

• Montrons que f est dérivable à droite en a.

Cela revient à montrer que la limite en  $a^+$  de  $\frac{f(x) - f(a)}{x - a}$  existe et est finie.

Cela revient à montrer que la limite en a de la fonction  $(\tau_a)_{|_{I\cap ]a,+\infty[}}$  existe et est finie.

On fixe cette fois-ci  $x \in I \cap ]a, +\infty[$  (un tel x existe car a est intérieur à I).

On a donc

$$\forall y \in I \cap ]a, +\infty[, \quad \tau_a(x) \leqslant \tau_a(y)$$

La fonction  $\tau_a$  restreinte à  $I \cap ]a, +\infty[$  est croissante.



D'après le théorème de la limite monotone, cette fonction  $(\tau_a)_{|I\cap a,+\infty[}$  admet une limite en a (qui est l'extrémité gauche de  $I\cap a,+\infty[$ ) : cette limite est finie (si cette fonction est minorée) et  $-\infty$  sinon.

Or ici on voit que  $(\tau_a)_{|_{I\cap ]a,+\infty[}}$  est minorée par  $\tau_a(x)$ .

Donc la limite de  $(\tau_a)_{|_{I\cap ]a,+\infty[}}$  en a existe et est finie.

Cela signifie exactement que la fonction f est dérivable à droite en a.

• On a donc montré que f est dérivable à gauche et à droite en a. Reprenons alors l'inégalité :

$$\forall x \in I \cap ]-\infty, a[, \forall y \in I \cap ]a, +\infty[, \tau_a(x) \leq \tau_a(y)$$

En passant à la limite sur *x* dans un premier temps (on fixe donc *y* et on fait varier *x*), on obtient

$$\forall \ y \in I \cap \ ]a, +\infty[, \quad f_g'(a) \leqslant \tau_a(y)$$

En passant à la limite sur y (et à ce stade, x a disparu), on obtient

$$f'_g(a) \leqslant f'_d(a)$$

13

POUR MOI : modifier l'énoncé en mettant  $\mathring{I}$  et mettre en remarque le cas pratique!

 $\implies$  Soit a < b dans I.

Par croissance de  $\tau_a$ , on a

$$\forall t \in I \cap ]-\infty, a[, \quad \tau_a(t) \leqslant \tau_a(b)$$

Par passage à la limite en a, on a  $f'(a) \leq \tau_a(b)$ .

De même, par croissance de  $\tau_b$ , on a

$$\forall t \in I \cap ]b, +\infty[, \quad \tau_b(a) \leq \tau_b(t)$$

Par passage à la limite en b, on a  $\tau_b(a) \leq f'(b)$ .

$$\Leftarrow$$
 Fixons  $a, b, \lambda$ . Étudions  $\varphi : x \mapsto \lambda f(x) - (1 - \lambda) f(b) - f(\lambda x + (1 - \lambda)b)$ 

On en déduit que  $\varphi$  est positive sur I.

D'où  $\varphi(a) \ge 0$ , ce qu'il fallait démontrer.



Première preuve. En étudiant la fonction auxiliaire "différence"

**Deuxième preuve.** Notons  $\mathbb{T}_{f,a}: x \mapsto f'(a)(x-a) + f(a)$ .

Supposons f est convexe sur I.

Montrons que  $\forall a \in I, \forall x \in I, f(x) \ge \mathbb{T}_{f,a}(x)$ .

Fixons  $a \in I$ .

Commençons par écrire des équivalences. Pour tout  $x \in I$ , on a :

$$f(x) \geqslant \mathbb{T}_{f,a}(x) \iff f(x) - f(a) \geqslant f'(a)(x - a)$$

$$\iff \begin{cases} f'(a) \geqslant \frac{f(x) - f(a)}{x - a} & \text{si } x < a \\ f(a) - f(a) \geqslant f'(a)(a - a) & \text{si } x = a \\ f'(a) \leqslant \frac{f(x) - f(a)}{x - a} & \text{si } x > a \end{cases}$$

Fixons  $x \in I$ .

Il y a trois cas.

 $\triangleright$  Le cas x = a est évident : l'inégalité à montrer est une égalité triviale.

 $\triangleright$  Le cas x > a.

Comme f est convexe, la fonction  $\tau_a$  est croissante, et elle tend vers f'(a) en a, on a donc :

$$f'(a) \leqslant \tau_a(x)$$

D'après les équivalences ci-dessus, on voit que cela implique (c'est même équivalent) :

$$f(x) \geqslant \mathbb{T}_{f,a}(x)$$

 $\triangleright$  Le cas x < a. Idem



Faire la preuve pour le log de manière indépendante de l'exponentielle.

Faire proprement la preuve pour le sinus.

D'abord,  $\forall x \in \mathbb{R}^+$ ,  $|\sin x| \le |x|$ .

En utilisant que  $\mathbb{R}^+ = [0, \frac{\pi}{2}] \cup [\frac{\pi}{2}, +\infty[$ .

Puis sur  $\mathbb{R}^-$ . Le faire proprement en prenant un  $t \in \mathbb{R}^-$  et en posant x = -t de sorte que  $x \in \mathbb{R}^+$ . Il faut penser à dire aux élèves que si on a  $g \leq d$  sur  $\mathbb{R}^+$  avec g et d paire, alors  $g \leq d$  sur  $\mathbb{R}^-$ . Ce qui se décline souvent avec  $|\widetilde{g}| \leq |\widetilde{d}|$  et  $\widetilde{g}$  et  $\widetilde{d}$  impaires.



1. Prouvons que  $\forall x \in [1, e], \ln x \geqslant \frac{x-1}{e-1}$ .

Fixons  $x \in [1,e]$ . Alors x est combinaison convexe de 1 et e.

En effet, x s'écrit  $\lambda \times 1 + \mu \times e$  avec  $\lambda = \frac{e-x}{e-1}$  et  $\mu = \frac{x-1}{e-1}$  positifs de somme 1.

La fonction ln est concave, d'où

$$ln(\lambda 1 + \mu e) \geqslant \lambda ln(1) + \mu ln(e)$$

c'est-à-dire 
$$\ln(x) \geqslant \frac{x-1}{e-1}$$
.

2. Montrons que  $\forall x \in \left[0, \frac{\pi}{2}\right], \quad \frac{2}{\pi}x \leqslant \sin x.$ 

Soit  $x \in \left[0, \frac{\pi}{2}\right]$ . Alors x est combinaison convexe de 0 et  $\frac{\pi}{2}$ .

En effet, x s'écrit  $\lambda \times 0 + \mu \times \frac{\pi}{2}$  avec  $\lambda = \frac{\frac{\pi}{2} - x}{\frac{\pi}{2}}$  et  $\mu = \frac{x - 0}{\frac{\pi}{2}} = \frac{2}{\pi}x$  positifs de somme 1.

La fonction sinus est concave sur  $[0, \frac{\pi}{2}]$ , d'où

$$\sin(\lambda 0 + \mu \frac{\pi}{2}) \geqslant \lambda \sin(0) + \mu \sin(\frac{\pi}{2})$$

c'est-à-dire  $sin(x) \geqslant \frac{2}{\pi}x$ .

#### 21

Si a ou b est nul, alors l'inégalité est évidente. Sinon, la fonction ln étant concave, on a :

$$\ln\left(\frac{a^p}{p} + \frac{b^q}{q}\right) \geqslant \frac{1}{p}\ln a^p + \frac{1}{q}\ln b^q \quad \text{soit} \quad \ln\left(\frac{a^p}{p} + \frac{b^q}{q}\right) \geqslant \ln(ab).$$

Par croissance de la fonction exponentielle, on en déduit l'inégalité de Young.

22

#### • Montrons que $G \leq A$ .

Par concavité de la fonction ln sur ]0,  $+\infty$ [, on a (car  $\lambda_1$  et  $\lambda_2$  sont positifs de somme 1),

$$\ln(\lambda_1 x_1 + \lambda_2 x_2) \geqslant \lambda_1 \ln x_1 + \lambda_2 \ln x_2$$

Par croissance de la fonction exponentielle, on en déduit :

$$\lambda_1 x_1 + \lambda_2 x_2 \geqslant \exp\left(\lambda_1 \ln x_1 + \lambda_2 \ln x_2\right)$$

Le membre droit vaut  $e^{\lambda_1 \ln x_1} e^{\lambda_2 \ln x_2}$  c'est-à-dire  $x_1^{\lambda_1} x_2^{\lambda_2}$ . Bilan :

$$\lambda_1 x_1 + \lambda_2 x_2 \geqslant x_1^{\lambda_1} x_2^{\lambda_2}$$
 ce qui s'écrit encore  $A \geqslant G$ 

#### • Montrons que $A \leq Q$ .

Par convexité de la fonction carré sur  $\mathbb{R}$  (ici on ne l'utilise que sur  $]0,+\infty[)$ , on a

$$(\lambda_1 x_1 + \lambda_2 x_2)^2 \leqslant \lambda_1 x_1^2 + \lambda_2 x_2^2$$

Par croissance de la fonction racine-carrée, on a

$$\sqrt{\left(\lambda_1 x_1 + \lambda_2 x_2\right)^2} \leqslant \sqrt{\lambda_1 x_1^2 + \lambda_2 x_2^2}$$

Comme  $\lambda_1 x_1 + \lambda_2 x_2 \geqslant 0$ , on obtient

$$\lambda_1 x_1 + \lambda_2 x_2 \leqslant \sqrt{\lambda_1 x_1^2 + \lambda_2 x_2^2}$$

#### • Montrons que $H \leq A$ .

Par convexité de la fonction inverse sur  $]0, +\infty[$ , on a

$$\frac{1}{\lambda_1 x_1 + \lambda_2 x_2} \leqslant \lambda_1 \frac{1}{x_1} + \lambda_2 \frac{1}{x_2}$$

Par décroissance de la fonction inverse, on obtient

$$\lambda_1 x_1 + \lambda_2 x_2 \geqslant \left(\lambda_1 \frac{1}{x_1} + \lambda_2 \frac{1}{x_2}\right)^{-1}$$

c'est-à-dire  $A \geqslant H$ .

• Montrons que  $H \leq G$ .

On a les équivalences

$$H \leqslant G \iff \frac{1}{H} \geqslant \frac{1}{G}$$

$$\iff \lambda_1 \frac{1}{x_1} + \lambda_2 \frac{1}{x_2} \geqslant \frac{1}{x_1^{\lambda_1} x_2^{\lambda_2}}$$

$$\iff \lambda_1 \frac{1}{x_1} + \lambda_2 \frac{1}{x_2} \geqslant \left(\frac{1}{x_1}\right)^{\lambda_1} \left(\frac{1}{x_2}\right)^{\lambda_2}$$

On a montré que la moyenne arithmétique pondérée est supérieure à la moyenne géométrique pondérée.

Appliquons cette inégalité aux réels  $\frac{1}{x_1}$  et  $\frac{1}{x_2}$ .

On obtient alors

$$\lambda_1 \frac{1}{x_1} + \lambda_2 \frac{1}{x_2} \geqslant \left(\frac{1}{x_1}\right)^{\lambda_1} \left(\frac{1}{x_2}\right)^{\lambda_2}$$

D'où  $H \leq G$ .



Par contraposée. Supposons que  $f'(a) \neq 0$ .

On a (WHY?):

$$f(x) - f(a) \sim_{x \to a} f'(a)(x - a)$$

Ainsi, f(x) - f(a) est du signe de f'(a)(x - a), qui est une quantité qui change de signe au voisinage de a.

On a donc NON (la quantité f(x) - f(a) garde un signe constant au voisinage de a).



Preuve: attendre le DL2.

Et singer la preuve faite précédemment

Par contraposée. Supposons que  $f''(a) \neq 0$ .

On a (WHY?):

$$f(x) - f(a) - f'(a)(x-a) \sim \frac{1}{x-a} f''(a)(x-a)^2$$

Ainsi, f(x) - f(a) - f'(a)(x - a) est du signe de  $f''(a)(x - a)^2$ , qui est une quantité qui ne change pas de signe au voisinage de a.

On a donc NON (la quantité f(x) - f(a) change de signe au voisinage de a).