Fonctions de deux variables exercices

101 Ouvert

Montrer que les ensembles suivants sont des ouverts de \mathbb{R}^2 . Illustrer votre réponse.

(i)
$$\mathbb{R}^2$$

(iii)
$$]0,1[^2]$$

(ii)
$$\mathbb{R}^2 \setminus \{(0,0)\}$$

(iv)
$$\{(x,y) \in \mathbb{R}^2 \text{ tel que } y > \cos(x) \}$$

Disque fermé 102

Soit $p=(a,b)\in\mathbb{R}^2$ et r>0. Montrer que la partie suivante (appelée disque fermé de centre p et de rayon r) n'est pas un ouvert de \mathbb{R}^2 :

$$A = \left\{ z \in \mathbb{R}^2 \mid ||z - p|| \leqslant r \right\}.$$

Calcul diff!

103 Calculs

Calculer les dérivées partielles des fonctions suivantes.

$$f_1: \mathbb{R} \times \mathbb{R}_+^* \longrightarrow \mathbb{R}$$
$$(x,y) \longmapsto \frac{x}{y}$$

$$f_3: \mathbb{R}_+^* \times \mathbb{R}_+^* \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto x \ln(xy)$

$$f_3: \mathbb{R}_+^* \times \mathbb{R}_+^* \longrightarrow \mathbb{R}$$
 $f_4: \mathbb{R}^2 \longrightarrow \mathbb{R}$ $(x,y) \longmapsto x \ln(xy)$ $(x,y) \longmapsto e^{-x} \sin(x^2 + y^2)$

104 Existence d'une dérivée selon tout vecteur et pourtant...

On considère la fonction :

$$f: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}$$

$$(x,y) \quad \longmapsto \quad \begin{cases} \frac{x^2 y}{x^4 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- 1. Montrer que la fonction f admet en tout point des dérivées selon tout vecteur.
- 2. Montrer que la fonction f n'est pas continue en (0,0).

105

Again — Soit $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$. Montrer que la fonction $g: t \mapsto f(t^2, t^3)$ est de classe \mathcal{C}^1 et calculer sa dérivée.

106 Calculs .

Soit $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$. Montrer que les fonctions suivantes sont de classe \mathcal{C}^1 sur \mathbb{R} ou \mathbb{R}^2 et, suivant le cas, calculer leur dérivée ou leurs dérivées partielles en fonction des dérivées partielles de f.

$$u_1: (x,y) \mapsto f(y,x)$$

$$u_3: (x,y) \mapsto f(y,f(x,x))$$

$$u_2: x \mapsto f(x,x)$$

$$u_4: x \mapsto f(x, f(x, x))$$

107

- 1. Soit $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$ telle que $\nabla f = 0$. Montrer que f est constante.
- 2. Donner un exemple d'ouvert U de \mathbb{R}^2 et de fonction $f \in \mathcal{C}^1(U,\mathbb{R})$ non constante telle que $\nabla f = 0.$

108 Équation fonctionnelle

Soit $f \in C^1(\mathbb{R}^2, \mathbb{R})$. Montrer l'équivalence :

$$\frac{\partial f}{\partial y} = 0 \qquad \iff \qquad \exists \, h \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}), \quad \forall (x,y) \in \mathbb{R}^2, \quad f(x,y) = h(x).$$

109 Coordonnées polaires

Soit $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$. On définit :

$$g: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}$$
$$(r,\theta) \quad \longmapsto \quad (r\cos(\theta), r\sin(\theta)).$$

- 1. Calculer les dérivées partielles de g, que l'on notera $\frac{\partial g}{\partial r}$ et $\frac{\partial g}{\partial \theta}$, en fonction de celles de f.
- 2. On dit que f est radiale si elle est constante sur tout cercle centré en 0. Montrer que cela se produit si, et seulement si :

$$\forall (a,b) \in \mathbb{R}^2, \quad a \frac{\partial f}{\partial y}(a,b) - b \frac{\partial f}{\partial x}(a,b) = 0.$$

110 Fonction homogène

Soit f une application de classe C^1 de \mathbb{R}^2 dans \mathbb{R} et $r \in \mathbb{R}$. On dit que f est homogène de degré r si

$$\forall (x,y) \in \mathbb{R}^2, \ \forall t > 0, \ f(tx,ty) = t^r f(x,y).$$

- 1. Montrer que si f est homogène de degré r, alors ses dérivées partielles sont homogènes de degré r-1.
- 2. Montrer que si f est homogène de degré r si et seulement si :

$$\forall (x,y) \in \mathbb{R}^2, \quad x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = rf(x,y).$$

111 Une équation fonctionnelle ___

1. Soit $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$. Montrer l'équivalence :

$$\frac{\partial f}{\partial x} - 2 \frac{\partial f}{\partial y} = 0 \qquad \iff \qquad \exists \, h \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}), \quad \forall (x, y) \in \mathbb{R}^2, \quad f(x, y) = h(2x + y).$$

On pourra considérer la fonction $g:(x,y)\mapsto f(x+y,x-2y)$.

2. Trouver toutes les fonctions $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$ telles que :

(E)
$$\forall (a,b) \in \mathbb{R}^2, \quad \frac{\partial f}{\partial x}(a,b) - 2\frac{\partial f}{\partial y}(a,b) = a.$$

112 Changement de variables

En effectuant le changement de variables $(x,y)=\left(u,\frac{u^2}{2}+v\right)$, déterminer les fonctions $f\in\mathcal{C}^1(\mathbb{R}^2,\mathbb{R})$ qui vérifient l'équation aux dérivées partielles $\frac{\partial f}{\partial x}(x,y)+x\frac{\partial f}{\partial y}(x,y)=x+y$, avec la condition aux limites f(0,y)=y.

Extrema

113 Again

Déterminer les extrema (locaux et globaux) des fonctions appartenant à $\mathcal{C}^1(\mathbb{R}^2,\mathbb{R})$ suivantes :

1.
$$f_1:(x,y)\mapsto\cos(x)+y^2$$
;

3.
$$f_3:(x,y)\mapsto 3x^2-2xy+3y^2-8x+8y$$
;

2.
$$f_2: (x,y) \mapsto e^{3x} y^2 + e^x y$$
;

4.
$$f_4:(x,y)\mapsto \exp(x\operatorname{Arctan}(y))$$
.

114 Une fonction

On considère la fonction $f:(x,y)\mapsto x\,e^y+y\,e^x$.

- 1. Montrer que $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$ et déterminer ses points critiques.
- 2. En étudiant $x \mapsto f(x,-1)$ et $x \mapsto f(x,x)$, montrer que f n'a pas d'extremum local.

115 Avec le gradient.

Soit $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$ telle que :

$$\forall (a,b) \in \mathbb{R}^2 \times \mathbb{R}^2, \quad \langle \nabla f(a) - \nabla f(b) \mid a-b \rangle \geqslant 0.$$

Montrer que tout point critique de f en est un minimum.

116 Une dernière fonction $_$

Soit $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto (y-x^2)(y-2x^2)$.

- 1. Montrer que (0,0) est l'unique point critique de f, et que f n'admet pas en ce point de maximum local.
- 2. Montrer que pour tout $v \in \mathbb{R}^2$, la fonction $t \mapsto f(tv)$ admet un minimum local en 0.
- 3. En examinant le comportement de f le long d'une parabole bien choisie, montrer que f n'admet pas d'extremum global en (0,0).

Fonctions de deux variables corrigés

- 1. Quel que soit $p \in \mathbb{R}^2$, on a évidemment $D(p,1) \subset \mathbb{R}^2$.
- 2. Soit $p \in \mathbb{R}^2 \setminus \{(0,0)\}$. Posons r = ||p|| > 0. On a $(0,0) \notin D(p,r)$, car ||p - (0,0)|| = r. Cela montre $D(p,r) \subset \mathbb{R}^2 \setminus \{(0,0)\}$.
- 3. Soit $p = (a, b) \in [0, 1]^2$; posons $r = \min\{a, 1 a, b, 1 b\} > 0$.

Montrons $D(p,r) \subset]0,1[^2$. Soit $z=(x,y) \in D(p,r)$.

On a $(x-a)^2 \le (x-a)^2 + (y-b)^2 = ||(x,y)-(a,b)||^2 < r^2$, donc |x-a| < r par stricte croissance de la fonction racine carré, ce qui donne a-r < x < a+r.

En particulier, les inégalités $r \leqslant a$ et $r \leqslant 1 - a$ montrent :

$$0 \leqslant a - r < x < a + r \leqslant 1,$$

ce qui donne $x \in]0,1[$. On montre de la même façon $y \in]0,1[$, ce qui donne $z \in]0,1[^2,$ et conclut.

4. Notons $U = \{(x, y) \in \mathbb{R}^2 \text{ tel que} y > \cos(x)\}$; soit $p = (a, b) \in U$.

Notons $\epsilon=\frac{b-\cos(a)}{2}>0.$ Par continuité de la fonction cosinus, on peut trouver $\eta>0$ tel que :

$$\forall x \in \mathbb{R} \Big(|x - a| \leqslant \eta \implies \Big| \cos(x) - \cos(a) \Big| \leqslant \epsilon \Big).$$

Soit $r = \min\{\eta, \epsilon\} > 0$. Montrons $D(p, r) \subset U$.

Soit $z = (x, y) \in D(p, r)$.

Comme dans la question précédente, on obtient :

$$|x - a| < r \le \eta$$
 et $|y - b| < r \le \epsilon$.

En particulier, la première inégalité entraı̂ne que $\left|\cos(x)-\cos(a)\right|\leqslant\epsilon$, ce qui donne :

$$y - \cos(x) > (b - \epsilon) - (\cos(a) + \epsilon) = (b - \cos(a)) - 2\epsilon \geqslant 0,$$

et montre $z \in U$.

Considérons q=(a+r,b). Comme $\|q-p\|=r$, on a $q\in A$. On va montrer qu'aucun disque ouvert centré en q n'est inclus dans A.

Soit s > 0.

Considérons le point z = (a + r + s/2, b).

- Comme ||z q|| = s/2 < s, on a bien $z \in D(q, s)$.
- Comme ||z-p|| = r + s/2 > r, on a $z \notin A$.

Cela montre que le disque D(q,s) n'est pas inclus dans A, et conclut.

1. Soit $(a,b) \in \mathbb{R}^2$. On va montrer f(a,b) = f(0,0), ce qui conclura. D'après la première règle de la chaîne, la fonction $\phi : t \mapsto f(ta,tb)$ est de classe \mathcal{C}^1 et on a :

$$\forall t \in \mathbb{R}, \quad \phi'(t) = \frac{\partial f}{\partial x}(ta, tb) a + \frac{\partial f}{\partial y}(ta, tb) b$$

Comme le gradient est nul par hypothèse, on a donc $\phi'=0$ sur l'intervalle $\mathbb R$. Donc ϕ est constante.

En particulier, $\phi(1) = \phi(0)$, ce qui montre f(a, b) = f(0, 0).

2. Considérons $U = \mathbb{R}^* \times \mathbb{R}$ et

$$\begin{array}{cccc} f: & U & \longrightarrow & \mathbb{R} \\ & (x,y) & \longmapsto & \begin{cases} 3 & \text{si } x < 0 \\ 9 & \text{si } x > 0. \end{cases} \end{array}$$

Il est clair que la fonction f n'est pas constante.

Pour tant, pour tout $p=(a,b)\in U$, la fonction f est constante sur un disque centré en p, ce qui montre que

$$\frac{\partial f}{\partial x}(p) = 0$$
 et $\frac{\partial f}{\partial y}(p) = 0$

c'est-à-dire $\nabla f(p) = 0$.

1. Nous allons raisonner par double implication, mais avant cela, faisons deux remarques préliminaires.

Considérons

$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto f(x+y,x-2y).$

• La deuxième règle de la chaîne (appliquée aux fonctions affines $\phi:(x,y)\mapsto x+y$ et $\psi:$ $(x,y)\mapsto x-2y$, toutes deux de classe \mathcal{C}^1) montre que g est de classe \mathcal{C}^1 et on a :

$$\forall (a,b) \in \mathbb{R}^2, \qquad \frac{\partial g}{\partial y}(a,b) = \frac{\partial f}{\partial x} (\phi(a,b), \psi(a,b)) \frac{\partial \phi}{\partial y}(a,b) + \frac{\partial f}{\partial y} (\phi(a,b), \psi(a,b)) \frac{\partial \psi}{\partial y}(a,b)$$
$$= \frac{\partial f}{\partial x} (\phi(a,b), \psi(a,b)) - 2 \frac{\partial f}{\partial y} (\phi(a,b), \psi(a,b))$$

 \bullet Remarquons que pour $x,y,u,v\in\mathbb{R},$ on a, en résolvant un système linéaire, l'équivalence :

$$\begin{cases} x + y = u \\ x - 2y = v \end{cases} \iff \begin{cases} x = \frac{2u + v}{3} \\ y = \frac{u - v}{3} \end{cases}$$

Cela nous permet d'exprimer f en fonction de g:

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) = g\left(\frac{2x+y}{3}, \frac{x-y}{3}\right).$$

 \Longrightarrow Supposons que $\frac{\partial f}{\partial x} - 2\frac{\partial f}{\partial y} = 0$. C'est une égalités de fonctions, qui dit que

$$\forall (x,y) \in \mathbb{R}^2, \quad \frac{\partial f}{\partial x}(x,y) - 2\frac{\partial f}{\partial y}(x,y) = 0$$

En particulier pour $(x,y) = (\phi(a,b), \psi(a,b))$, on a

$$\forall (a,b) \in \mathbb{R}^2, \quad \frac{\partial f}{\partial x} (\phi(a,b), \psi(a,b)) - 2 \frac{\partial f}{\partial y} (\phi(a,b), \psi(a,b)) = 0$$

Avec le calcul précédent, on a donc

$$\forall (a,b) \in \mathbb{R}^2, \quad \frac{\partial g}{\partial y}(a,b) = 0$$

Autrement dit, la fonction $\frac{\partial g}{\partial u}$ est nulle.

D'après l'exercice 108, on peut trouver une fonction $h_1 \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ telle que :

$$\forall (u, v) \in \mathbb{R}^2, \quad q(u, v) = h_1(u)$$

En posant $h: t \mapsto h_1(t/3)$ (qui reste évidemment de classe \mathcal{C}^1), on obtient :

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) = g\left(\frac{2x+y}{3}, \frac{x-y}{3}\right) = h_1\left(\frac{2x+y}{3}\right) = h(2x+y).$$

Soit $h \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ telle que $\forall (x, y) \in \mathbb{R}^2$, f(x, y) = h(2x + y).

On remarque que $f = h \circ \widetilde{f}$ où $\widetilde{f}: (x,y) \mapsto 2x + y$.

À l'aide de la dérivée d'une composée (règle de la chaîne numéro 0) :

$$\forall (a,b) \in \mathbb{R}^2, \quad \begin{cases} \frac{\partial f}{\partial x}(a,b) = h'(2a+b) \times \frac{\partial \tilde{f}}{\partial x}(a,b) \\ \frac{\partial f}{\partial y}(a,b) = h'(2a+b) \times \frac{\partial \tilde{f}}{\partial y}(a,b) \end{cases}$$

Ainsi,

$$\forall (a,b) \in \mathbb{R}^2, \quad \frac{\partial f}{\partial x}(a,b) \ - \ 2\frac{\partial f}{\partial y}(a,b) \ = \ h'(2a+b) \times 2 \ - \ 2\Big(h'(2a+b) \times 1\Big) \ = \ 0.$$

2. On va utiliser le principe général suivant.

Notons E une équation linéaire avec second membre, d'inconnue f.

On note E_H l'équation homogène associée et on suppose que l'on connaît une solution particulière f_0 de E.

On a alors l'équivalence :

f est solution de E \iff $f - f_0$ est solution de E_H .

La fonction $f_0:(x,y)\mapsto \frac{1}{2}x^2$ est de classe \mathcal{C}^1 et on a :

$$\forall (a,b) \in \mathbb{R}^2, \qquad \frac{\partial f_0}{\partial x}(a,b) = a \quad \text{ et } \quad \frac{\partial f_0}{\partial y}(a,b) = 0,$$

donc f_0 vérifie l'équation (E).

D'après le principe général, les solutions sont les fonctions $(x,y) \mapsto \frac{1}{2}x^2 + h(2x+y)$ où h décrit $C^1(\mathbb{R},\mathbb{R})$.