

Nombrescomplexes

exercices

Conjugué, Module ...

101 Tangente de l'angle moitié

Soit $z \in \mathbb{C} \setminus \mathbb{R}_{-}$.

Montrer que Re $z + |z| \neq 0$. Puis, en notant θ un argument de z, montrer que

$$\tan\frac{\theta}{2} = \frac{\operatorname{Im}z}{\operatorname{Re}z + |z|}.$$

102 Calculs dans \mathbb{U} —

Soit $z_1, z_2 \in \mathbb{U}$ tels que $z_1 z_2 \neq -1$. On pose $Z = \frac{z_1 + z_2}{1 + z_1 z_2}$

- 1. Montrer que Z est réel.
- 2. On note θ_1 et θ_2 des arguments des complexes z_1 et z_2 . Que peut-on dire de $\theta_1 + \theta_2$? Exprimer le nombre réel Z en fonction de θ_1 et θ_2 (sous-entendu sans exponentielle complexe).

[103] Cas d'égalité de l'inégalité triangulaire dans \mathbb{C} $_$

Le but de l'exercice est de (re)démontrer l'équivalence suivante :

$$\forall z_1, z_2 \in \mathbb{C}, \quad |z_1 + z_2| = |z_1| + |z_2| \iff (z_1 \in z_2 \mathbb{R}^+ \text{ ou } z_2 \in z_1 \mathbb{R}^+)$$

où la notation $z_1 \in z_2 \mathbb{R}^+$ signifie « $\exists \lambda \in \mathbb{R}^+, z_1 = \lambda z_2$ ».

Une remarque en passant : les deux assertions sont symétriques en z_1 et z_2 , c'est-à-dire qu'elles ne changent pas si l'on échange les rôles joués par z_1 et z_2 .

1. Dans le cours, on a écrit les équivalences suivantes (se rappeler les détails) :

$$\forall z_1, z_2 \in \mathbb{C}, \qquad |z_1 + z_2| = |z_1| + |z_2| \iff z_1 \overline{z_2} + \overline{z_1} z_2 = 2|z_1 z_2|$$

$$\iff \operatorname{Re}(z_1 \overline{z_2}) = |z_1 \overline{z_2}|$$

$$\iff z_1 \overline{z_2} \in \mathbb{R}^+$$

2. Montrer

$$\forall z_1, z_2 \in \mathbb{C}, \qquad |z_1 + z_2| = |z_1| + |z_2| \iff (z_1 \in z_2 \mathbb{R}^+ \text{ ou } z_2 = 0)$$

3. Montrer l'équivalence :

$$\forall z_1, z_2 \in \mathbb{C}, \qquad |z_1 + z_2| = |z_1| + |z_2| \quad \iff \quad \left(z_1 \in z_2 \mathbb{R}^+ \quad \text{ou} \quad z_2 \in z_1 \mathbb{R}^+\right)$$

4. **Bonus.** On suppose z_1 et z_2 non nuls, de sorte que l'on peut considérer leurs arguments. Montrer

$$|z_1 + z_2| = |z_1| + |z_2| \iff z_1 \text{ et } z_2 \text{ ont mêmes arguments}$$

104 Cas d'égalité

Soit z_1, z_2, z_3 trois complexes non nuls. Montrer l'équivalence :

$$|z_1 + z_2 + z_3| = |z_1| + |z_2| + |z_3| \iff z_1, z_2, z_3 \text{ ont mêmes arguments.}$$

Réfléchir à un énoncé et une preuve pour n nombres complexes non nuls.

105 Forme trigonométrique

Soit $\theta \in \mathbb{R}$. On pose $Z = 1 + e^{i\theta} + e^{2i\theta}$.

À quelle condition nécessaire et suffisante sur θ , a-t-on Z = 0?

Lorsque $Z \neq 0$, donner la forme trigonométrique de Z.

106 Égalité de modules _

Trouver tous les $z \in \mathbb{C}^*$ tels que $z, \frac{1}{z}$ et 1-z aient même module.

107 Défi

Soit deux entiers dont chacun est la somme de deux carrés d'entiers.

Montrer que leur produit est aussi la somme de deux carrés d'entiers.

Inégalités

108 Une inégalité (1)

Soit $z \in \mathbb{C}$. Montrer $\frac{|\operatorname{Re} z| + |\operatorname{Im} z|}{\sqrt{2}} \leq |z| \leq |\operatorname{Re} z| + |\operatorname{Im} z|$.

109 Une inégalité (2)

Soit $n \in \mathbb{N}$ et $z \in \mathbb{C} \setminus \mathbb{U}$. Montrer que $\left| \frac{1-z^n}{1-z} \right| \leqslant \frac{1-|z|^n}{1-|z|}$.

110 Avec l'inégalité triangulaire!

Soit $z, z' \in \mathbb{C}$. Montrer que $|z| + |z'| \le |z + z'| + |z - z'|$ et préciser les cas d'égalité.

Formule de Moivre, Formule d'Euler

111 Linéarisation _

Linéariser $\sin^4 x$.

On doit trouver $\frac{3}{8} + \frac{1}{8}\cos(4x) - \frac{1}{2}\cos(2x)$

Exprimer $\cos^5 \theta$ et $\sin^5 \theta$ en fonction des $\cos(k\theta)$ et $\sin(k\theta)$ pour $0 \le k \le 5$.

Résolution d'équations

112 Sans effort _

Soit $a \in \mathbb{C}$. Résoudre l'équation $z^2 - (1 + a + a^2)z + a + a^3 = 0$.

113 Un système somme-produit ____

Chercher tous les couples $(x,y) \in \mathbb{R}^2$ vérifiant $\begin{cases} x+y=3 \\ xy=2 \end{cases}$.

Combien y a-t-il de solutions?

114 Polynôme minimal _____

Soit $z \in \mathbb{C} \setminus \mathbb{R}$. Trouver $p, q \in \mathbb{R}$ tels que $z^2 + pz + q = 0$.

115 Vous avez dit « somme-produit » ?

Soit $p, q \in \mathbb{C}$ avec $q \neq 0$.

On note z_1 et z_2 les solutions de l'équation $z^2 + pz + q = 0$.

Justifier que z_1 et z_2 sont non nuls, puis déterminer une équation du second degré dont les solutions sont $\frac{1+z_1}{z_2}$ et $\frac{1+z_2}{z_1}$.

116

Une équation du 3^{ème} degré Résoudre dans $\mathbb C$ l'équation $z^3+(1-i)\,z^2-z+1-3i=0$, après avoir démontré qu'elle possède une solution imaginaire pure.

117Une équation à paramètre de degré 2 _____

Soit $\theta \in \mathbb{R}$. Résoudre l'équation $z^2 - 2\cos\theta z + 1 = 0$ d'inconnue $z \in \mathbb{C}$.

118 Une équation à paramètre de degré 4

Soit $\theta \in]-\frac{\pi}{2}, \frac{\pi}{2}[.$

Résoudre l'équation $z^4 - 2\sin\theta z^2 + \tan^2\theta = 0$.

Combien a-t-elle de solutions distinctes?

Racines $n^{\text{ème}}$

119 Deux produits

Soit $(a, b, c) \in \mathbb{C}^3$.

Calculer les produits $(a+bj+cj^2)(a+bj^2+cj)$ et $(a+b+c)(a+bj+cj^2)(a+bj^2+cj)$.

120 Racine 7^{ème} de l'unité ____

On pose $z = e^{i\frac{2\pi}{7}}$, $S = z + z^2 + z^4$ et $T = z^3 + z^5 + z^6$.

- 1. Montrer que $\overline{S} = T$ et Im S > 0.
- 2. Calculer S + T et ST. En déduire S et T.

121 Une CNS d'inclusion des \mathbb{U}_n

Soit m et n dans \mathbb{N}^* . Montrer que $\mathbb{U}_n \subset \mathbb{U}_m$ si et seulement si n divise m.

Question subsidiaire une fois que vous avez terminé : comment prouver le plus simplement du monde l'implication $\mathbb{U}_n \subset \mathbb{U}_m \implies n \leqslant m$?

122 Équations plus difficiles

Soit $n \in \mathbb{N}^*$. Résoudre dans \mathbb{C} les équations :

- 1. $(z+1)^n = (z-1)^n$
- 2. $(z+1)^n = (1-z)^n$

$oxed{123}$ Trois points de $\mathbb U$ à somme nulle .

Soit $x, y, z \in \mathbb{R}$. Montrer que $e^{ix} + e^{iy} + e^{iz} = 0 \implies e^{i2x} + e^{i2y} + e^{i2z} = 0$.

Exponentielle complexe

124 Et si on multipliait par e^z ?!

Résoudre l'équation $e^z + e^{-z} = 2i$.

125 Inégalité exponentielle

Montrer que $\forall z \in \mathbb{C}$, $|e^z| \leq e^{|z|}$ et déterminer les cas d'égalité.

Un peu de géométrie

126 Triangle équilatéral

Montrer que les points distincts A, B et C, d'affixes a, b et c, forment un triangle équilatéral si et seulement si $a^2 + b^2 + c^2 = ab + bc + ca$.

127 Cercle et orthogonalité ___

Soit $a, b \in \mathbb{C}$. On pose $\omega = \frac{a+b}{2}$ et $R = \frac{|b-a|}{2}$.

1. Montrer l'équivalence

$$\forall z \in \mathbb{C} \setminus \{a\}, \quad \frac{z-b}{z-a} \in i\mathbb{R} \iff |z-\omega|^2 = R^2$$

2. On suppose $a \neq b$ et on note A et B les points d'affixes a et b.

On note Ω le point d'affixe ω .

Pour un point M du plan, déterminer une condition nécessaire et suffisante pour que \overrightarrow{MA} et \overrightarrow{MB} soient orthogonaux.

128 Puissance 1, 2, 3

Déterminer les complexes $z \in \mathbb{C}$ pour que les points d'affixes z, z^2, z^3 :

- 1. soient alignés;
- 2. forment un triangle rectangle;
- 3. forment un triangle rectangle et isocèle.

129 Orthocentre

Soit A, B, C trois points distincts du cercle trigonométrique, d'affixes respectives a, b, c. Montrer que le point H d'affixe h = a + b + c est l'orthocentre du triangle ABC, c'est-à-dire le point de concours des hauteurs.

130 π , où es-tu?

Pour tout $n \ge 3$, on pose

$$W_n = \sum_{k=0}^{n-1} \left| e^{i\frac{2k\pi}{n}} - e^{i\frac{2(k+1)\pi}{n}} \right|.$$

- 1. Donner une interprétation géométrique de W_n et en déduire une conjecture pour la limite de la suite $(W_n)_{n\geqslant 3}$.
- 2. Calculer W_3 .
- 3. Soit $n \ge 3$. Montrer que $W_n = 2n \sin\left(\frac{\pi}{n}\right)$.
- 4. Montrer que la suite $(W_n)_{n\geqslant 3}$ admet une limite et la déterminer.

131 Équation du 3^{ème} degré

1. Rappeler la définition du nombre complexe j. Donner un polynôme de degré 2 admettant j pour racine.

Soit $(p,q) \in (\mathbb{R}^*)^2$.

On considère l'équation d'inconnue complexe z

$$(E_1): z^3 + pz + q = 0$$

et l'équation d'inconnue complexe Z

$$(E_2): Z^2 + qZ - \frac{p^3}{27} = 0$$

On note U et V les solutions de l'équation (E_2) .

On note u une racine cubique de U, c'est-à-dire un nombre **complexe** tel que $u^3 = U$.

- 2. Exprimer U + V et UV en fonction de p et q.
- 3. Montrer que $u \neq 0$.

Dans la suite, on pose $v = \frac{-p}{3u}$.

- 4. Montrer que $v^3 = V$ puis que $u^3 + v^3 = -q$.
- 5. Montrer que u + v est solution de l'équation (E_1) .
- 6. Montrer que $ju + j^2v$ et $j^2u + jv$ sont aussi des solutions de l'équation (E_1) .
- 7. Dans cette question, on suppose que u et v sont **réels distincts**. Montrer que $ju + j^2v \notin \mathbb{R}$. En déduire que $j^2u + jv \notin \mathbb{R}$, puis que $ju + j^2v \neq j^2u + jv$.
- 8. Montrer que si $4p^3 + 27q^2 > 0$, l'équation (E_1) admet une racine réelle et une seule. Indication : on pourra utiliser que pour tout réel A, il existe un unique réel a tel que $a^3 = A$.
- 9. Montrer que l'équation $z^3 z 1 = 0$ admet une unique solution réelle que l'on déterminera à l'aide de radicaux (racine carrée, racine cubique etc.).

1. Soit (E) l'équation $z^2 + z + 1 = 0$ d'inconnue $z \in \mathbb{C}$. Donner les solutions de (E) sous forme algébrique et sous forme exponentielle.

Dans la suite du problème, on pose $j = e^{\frac{2i\pi}{3}}$.

2. Soit $z \in \mathbb{C}$.

On écrit z sous la forme $z=a+\mathrm{i} b$ avec $(a,b)\in\mathbb{R}^2.$

- (a) Montrer qu'il existe un unique couple $(x,y) \in \mathbb{R}^2$ tel que $z = x + \mathrm{i} y$.
- (b) Exprimer $|z|^2$ en fonction de x et de y.

Dans la suite, on note \mathcal{A} l'ensemble

$$\mathcal{A} = \{x + jy, (x, y) \in \mathbb{Z}^2\}$$
 ce qui s'écrit encore $\mathcal{A} = \{z \in \mathbb{C} \mid \exists (x, y) \in \mathbb{Z}^2, z = x + jy\}$

- 3. (a) Montrer que A est stable par somme.
 - (b) Montrer que A est stable par produit.
 - (c) Montrer que \mathcal{A} est stable pour la conjugaison, c'est-à-dire que si $z \in \mathcal{A}$, alors \overline{z} est dans \mathcal{A} .
- 4. Soit \mathcal{U} l'ensemble suivant

$$\mathcal{U} = \{ z \in \mathcal{A} \mid \exists z' \in \mathcal{A}, zz' = 1 \}$$

Autrement dit, \mathcal{U} est l'ensemble des complexes z de l'ensemble \mathcal{A} tels qu'il existe z' dans \mathcal{A} vérifiant zz'=1.

- (a) Montrer que \mathcal{U} est stable par produit.
- (b) Soit $z \in \mathcal{A}$. Montrer l'équivalence suivante

$$z \in \mathcal{U} \iff |z|^2 = 1$$

(c) Montrer que \mathcal{U} contient exactement six éléments que l'on écrira en fonction de j. Indication, on pourra remarquer que $|z|^2$ peut s'écrire comme la somme de deux carrés.

Khôlles

133 Non, sinon π serait rationnel

A-t-on l'égalité $\mathbb{U} = \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$?

- Soit $z \in \mathbb{U}$. Montrer que $|1+z| \ge 1$ ou $|1+z^2| \ge 1$.
- Montrer l'égalité $\left\{z\in\mathbb{C}^*\mid z+\frac{1}{z}\in\mathbb{R}\right\}=\mathbb{U}\cup\mathbb{R}^*.$
- **136** Équation $z^n = w^m$ Trouver $n, m \in \mathbb{N}^*$ minimaux tels que $(1 + i\sqrt{3})^m = (1 i)^n$.
- Soit $\alpha \in \mathbb{C}$. Donner une condition nécessaire et suffisante sur α pour que l'on ait l'implication

 $\forall (x,y) \in \mathbb{R}^2, \qquad x + \alpha y = 0 \implies x = y = 0.$

- 138 Détermination principale de la racine carrée
 - 1. Pour quels $z\in\mathbb{C}$ l'expression $f(z)=\frac{z+|z|}{\sqrt{2\operatorname{Re}z+2|z|}}$ est-elle bien définie? On note $\mathscr D$ l'ensemble formé par ces valeurs de z.
 - 2. Calculer $f(z)^2$ pour $z \in \mathscr{D}$.
 - 3. Déterminer les racines carrées de -9 + 40i.
- 139 Une équation complexe

Résoudre dans \mathbb{C} l'équation $\operatorname{Re}(z^3) = \operatorname{Im}(z^3)$.

140 Racines de même module —

Soit p et q deux nombres complexes, avec $q \neq 0$. On suppose que les deux racines de $X^2 - pX + q^2$ ont le même module.

Exprimer le quotient $\frac{p^2}{q^2}$ en fonction des deux racines, et en déduire que $\frac{p}{q} \in \mathbb{R}$.

141 Racine *n*-ème de l'unité et sommes

Soit $n \geqslant 1$.

1. Soit $z \in \mathbb{C}$. Montrer que

$$\sum_{\omega \in \mathbb{U}_n} \left(z + \omega\right)^n \ = \ n \left(z^n + 1\right)$$

2. En déduire

$$\sum_{k=0}^{n-1} (-1)^k \cos^n \left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}} \qquad \text{et} \qquad \sum_{k=0}^{n-1} (-1)^k \cos^n \frac{(2k-1)\pi}{2n} = 0$$

Nombrescomplexes

corrigés

Le complexe z n'est pas nul, donc il possède un argument $\theta.$

Montrons que Re $z + |z| \neq 0$.

Raisonnons par l'absurde en supposant que Re z = -|z|.

En élevant au carré, on a donc $(\operatorname{Re} z)^2 = |z|^2$.

D'où $(\text{Im } z)^2 = 0$.

D'où $z = \operatorname{Re} z$.

D'où z=-|z| d'après l'hypothèse du raisonnement par l'absurde.

On a donc $z \in \mathbb{R}_-$ ce qui contredit l'hypothèse de l'énoncé.

Montrons la formule en partant du membre droit. On a :

$$\frac{\operatorname{Im} z}{\operatorname{Re} z + |z|} = \frac{|z| \sin \theta}{|z| \cos \theta + |z|} = \frac{\sin \theta}{\cos \theta + 1} = \frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}} = \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} = \tan \frac{\theta}{2} \cdot$$

1. On a:

$$\overline{Z} = \frac{\overline{z_1} + \overline{z_2}}{1 + \overline{z_1} \, \overline{z_2}}$$
règles de calcul des conjugués
$$= \frac{\frac{1}{z_1} + \frac{1}{z_2}}{1 + \frac{1}{z_1} \, \frac{1}{z_2}}$$
car $z_1, z_2 \in \mathbb{U}$ et le conjugué d'un élément de \mathbb{U} est égal à son inverse
$$= \frac{\frac{z_2 + z_1}{z_1 \, z_2}}{\frac{z_1 \, z_2 + 1}{z_1 \, z_2}}$$
en réduisant aux mêmes dénominateurs
$$= Z$$

Comme $\overline{Z} = Z$, on en déduit que Z est réel.

2. Par défintion de θ_1 et θ_2 , on a $z_1 = e^{i\theta_1}$ et $z_2 = e^{i\theta_2}$.

Comme $z_1 z_2 \neq -1$, on a $\theta_1 + \theta_2 \not\equiv \pi$ [2 π].

Par les formules de l'angle moitié, en forçant les factorisations, on a

$$Z = \frac{e^{i\theta_1} + e^{i\theta_2}}{1 + e^{i(\theta_1 + \theta_2)}} = \frac{e^{i(\theta_1 + \theta_2)/2}}{e^{i(\theta_1 + \theta_2)/2}} \frac{e^{i(\theta_1 - \theta_2)/2} + e^{i(-\theta_1 + \theta_2)/2}}{e^{-i(\theta_1 + \theta_2)/2} + e^{i(\theta_1 + \theta_2)/2}} = \frac{\cos\left(\frac{\theta_1 - \theta_2}{2}\right)}{\cos\left(\frac{\theta_1 + \theta_2}{2}\right)}.$$

- Supposons $|z_1 + z_2 + z_3| = |z_1| + |z_2| + |z_3|$.

D'après l'inégalité triangulaire appliquée à deux reprises, on a :

$$|z_1 + z_2 + z_3| \le |z_1 + z_2| + |z_3| \le |z_1| + |z_2| + |z_3|.$$

Comme les termes extrêmes sont égaux par hypothèse, on a en fait des égalités partout.

L'égalité de droite fournit :

$$|z_1 + z_2| = |z_1| + |z_2|.$$

On utilise alors le cas d'égalité de l'inégalité triangulaire pour ces deux nombres complexes non nuls.

On obtient que $z_1 \in z_2 \mathbb{R}^+$ ou $z_2 \in z_1 \mathbb{R}^+$.

Donc z_1 et z_2 ont mêmes arguments (ceci est dû au fait qu'un argument d'un réel positif est nul modulo 2π).

On recommence tout ce raisonnement en échangeant les rôles joués par z_3 et z_2 .

On obtient que z_1 et z_3 ont mêmes arguments.

Bilan : z_1, z_2, z_3 ont mêmes arguments.

— Réciproquement, supposons qu'il existe $\theta \in \mathbb{R}$ tel que $z_k = |z_k| e^{i\theta}$ pour tout $k \in [1, 3]$.

Alors
$$z_1 + z_2 + z_3 = (|z_1| + |z_2| + |z_3|)e^{i\theta}$$
.

En appliquant le module, on obtient

$$\left|z_1+z_2+z_3\right| = \left|\underbrace{\left|z_1\right|+\left|z_2\right|+\left|z_3\right|}_{\in \mathbb{R}^+}\right|\underbrace{\left|e^{i\theta}\right|}_{=1}$$

D'où $|z_1 + z_2 + z_3| = |z_1| + |z_2| + |z_3|$.

• Déterminons une condition nécessaire et suffisante sur θ pour que Z=0. Supposons Z=0.

Alors $e^{i\theta} \neq 1$ (sinon, on aurait 1 + 1 + 1 = 0).

Ainsi

$$\frac{1 - e^{3i\theta}}{1 - e^{i\theta}} = 0$$

D'où $e^{3i\theta} = 1$, d'où $3\theta \equiv 0$ $[2\pi]$, d'où $\theta \equiv 0$ $[\frac{2\pi}{3}]$.

Réciproquement, supposons $\theta \equiv 0 \left[\frac{2\pi}{3} \right]$.

Alors $e^{i\theta} = j$, et $e^{2i\theta} = j^2$.

Ainsi, Z vaut $1 + j + j^2$, qui vaut 0 (WHY?).

• Supposons $\theta \not\equiv 0$ $\left[\frac{2\pi}{3}\right]$, c'est-à-dire $Z \neq 0$. Déterminons la forme trigonométrique de Z. À l'aide de la formule de l'angle moitié, on a

$$Z = \frac{1 - e^{3i\theta}}{1 - e^{i\theta}} = \frac{e^{3i\frac{\theta}{2}}(e^{-3i\frac{\theta}{2}} - e^{-3i\frac{\theta}{2}})}{e^{i\frac{\theta}{2}}(e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}})} = e^{i\theta} \frac{-2i\sin\frac{3\theta}{2}}{-2i\sin\frac{\theta}{2}} = \frac{\sin\frac{3\theta}{2}}{\sin\frac{\theta}{2}}e^{i\theta}$$

Attention, il ne s'agit pas encore de la forme trigonométrique de $\mathbb{Z}.$

Résumons, on a

$$Z = \frac{\sin\frac{3\theta}{2}}{\sin\frac{\theta}{2}} e^{i\theta}$$
 et aussi $Z = -\frac{\sin\frac{3\theta}{2}}{\sin\frac{\theta}{2}} e^{i(\theta+\pi)}$

 \triangleright Reste à trouver une condition sur θ concernant le signe de $r = \frac{\sin \frac{3\theta}{2}}{\sin \frac{\theta}{2}}$.

Au brouillon, on peut commencer en prenant d'abord $\theta \in [0, 2\pi]$ (plutôt que $\theta \in \mathbb{R}$).

On trouve alors $\frac{3\theta}{2} \in [0, 3\pi]$ et $\frac{\theta}{2} \in [0, \pi]$.

Ainsi, $r \geqslant 0 \iff \frac{3\theta}{2} \in [0,\pi] \cup [2\pi,3\pi] \iff \theta \in [0,\frac{2\pi}{3}] \cup [\frac{4\pi}{3},2\pi].$

Pour montrer que c'est l'ensemble à trouver, cela doit être plus pénible, donc j'opte pour une autre solution.

En revanche, on peut établir l'égalité (penser par exemple à un produit en croix, et à $\sin p - \sin q$):

$$\frac{\sin\frac{3\theta}{2}}{\sin\frac{\theta}{2}} = 1 + 2\cos\theta$$

et alors, il est facile de voir que les θ cherchés sont dans $[0, \frac{2\pi}{3}] \cup [\frac{4\pi}{3}, 2\pi]$.

Comment ai-je eu l'idée de cette égalité de trigo? Eh bien, en partant différemment dans l'expression de Z, et en voulant chercher tout de suite son module. On a

$$|Z| \; = \; |1 + \mathrm{e}^{\mathrm{i}\theta} + \mathrm{e}^{2\mathrm{i}\theta}| \; = \; |\mathrm{e}^{\mathrm{i}\theta}(\mathrm{e}^{-\mathrm{i}\theta} + \mathrm{e}^{\mathrm{i}\theta}) + \mathrm{e}^{\mathrm{i}\theta}| \; = \; |\mathrm{e}^{\mathrm{i}\theta}||(\mathrm{e}^{-\mathrm{i}\theta} + \mathrm{e}^{\mathrm{i}\theta}) + 1| \; = \; |2\cos\theta + 1|.$$

Bilan. La forme trigonométrique de Z est

$$\begin{cases} \frac{\sin\frac{3\theta}{2}}{\sin\frac{\theta}{2}} \mathrm{e}^{\mathrm{i}\theta} & \text{si } \theta \in \bigcup\limits_{k \in \mathbb{Z}} \left[0 + 2k\pi, \ \frac{2\pi}{3} + 2k\pi \right] \cup \left[\frac{4\pi}{3} + 2k\pi, \ 2\pi + 2k\pi \right] \\ -\frac{\sin\frac{3\theta}{2}}{\sin\frac{\theta}{2}} \mathrm{e}^{\mathrm{i}(\theta + \pi)} & \text{sinon} \end{cases}$$

Procédons par analyse et synthèse.

Analyse. Soit $z \in \mathbb{C}^*$ tel que $|z| = \left|\frac{1}{z}\right| = |1 - z|$.

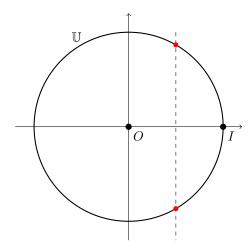
Il y a deux égalités à exploiter.

D'une part, on a $\left|\frac{1}{z}\right| = |z|$, donc $|z|^2 = 1$. Donc $z \in \mathbb{U}$.

D'autre part, on a |z|=|1-z|, donc le point M_z d'affixe z est à égale distance de l'origine O (d'affixe 0) et de I (d'affixe 1). Autrement dit, M_z est sur la médiatrice du segment [OI], qui est la droite verticale d'équation $x=\frac{1}{2}$. On a donc Re $z=\frac{1}{2}$.

Puisque $z \in \mathbb{U}$, on a $(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2 = 1$, donc $\operatorname{Im} z = \pm \frac{\sqrt{3}}{2}$.

On en déduit que $z \in \left\{ \frac{1}{2} \pm \frac{\sqrt{3}}{2}i \right\}$.



Remarque. On aurait pu aussi dire la chose suivante. D'autre part, on a |1-z|=1 (car on vient d'obtenir |z|=1), donc M_z est sur le cercle $\mathcal{C}_{I,1}$ de centre I et de rayon 1. Mais ensuite, il faut intersecter les deux cercles et constater que l'on trouve les deux points.

Synthèse. Vérifions que les deux complexes $\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ sont solutions.

Posons $z_0 = \frac{1}{2} + \frac{\sqrt{3}}{2}i = 1 + j$.

On a $|z_0| = 1$, donc $|1/z_0| = 1$, et $|1 - z_0| = |-j| = 1$.

En passant au conjugué, on voit que \overline{z}_0 possède les mêmes propriétés.

Les nombres cherchés sont donc $-\overline{j}=\frac{1}{2}+\frac{\sqrt{3}}{2}i$ et son conjugué $-j=\frac{1}{2}-\frac{\sqrt{3}}{2}i$.

Soit m et n les deux entiers considérés.

Par hypothèse, on peut trouver $a, b, c, d \in \mathbb{N}$ tels que $m = a^2 + b^2$ et $n = c^2 + d^2$.

On a alors :

$$\begin{array}{lll} mn & = & (a^2+b^2)(c^2+d^2) \\ & = & |a+\operatorname{i} b|^2\,|c+\operatorname{i} d|^2 & \text{d\'efinition du module} \\ & = & |(a+\operatorname{i} b)(c+\operatorname{i} d)|^2 & \text{propri\'et\'e du module} \\ & = & |(ac-bd)+\operatorname{i} (ad+bc)|^2 & \text{calcul} \\ & = & (ac-bd)^2+(ad+bc)^2. & \text{d\'efinition du module} \end{array}$$

Comme ac-bd et ad+bc sont des entiers, c'est gagné!

108

On me signale que l'inégalité de droite peut être traitée à coup d'inégalité triangulaire! Pour l'inégalité de gauche, on pose $x={\rm Re}\,z$ et $y={\rm Im}\,z$ pour alléger. Et on élève au carré!

109

On me signale que le cas n=0 doit être traité à part, si l'on utilise des pointillés.

On me signale aussi que la formule de la somme des termes etc... est connue uniquement dans \mathbb{R} en classe de Terminale.

Solution 1. On va établir deux inégalités que l'on va sommer.

Rappelons l'inégalité triangulaire $\forall z_1, z_2 \in \mathbb{C}, \quad |z_1 + z_2| \leq |z_1| + |z_2|$.

— D'après l'inégalité triangulaire avec $z_1 = z + z'$ et $z_2 = z - z'$, on a donc :

$$\underbrace{|(z+z')+(z-z')|}_{2|z|} \leqslant |z+z'| + |z-z'|.$$

— En échangeant les rôles joués par z et z', on obtient

$$2|z'| \leq |z' + z| + |z' - z|$$

c'est-à-dire

$$(\star') \qquad \qquad 2|z'| \leqslant |z+z'| + |z-z'|.$$

Sommons ces deux inégalités (\star) et (\star') et simplifions par 2 :

$$|z| + |z'| \leq |z + z'| + |z - z'|$$

Solution 2.

Quand on arrive sur (\star) , on peut aussi penser à faire une disjonction de cas du type $|z'| \leq |z|$.

Solution 3. Faire un calcul bourrin.

Solution 4. Faire un calcul, mais en s'y prenant bien!

- Cas z=0, l'inégalité à prouver s'écrit $|z'| \leq 2|z'|$, qui est bien vérifiée!
- Cas $z \neq 0$, on se ramène à montrer que :

$$1 + \left| \frac{z'}{z} \right| \leqslant \left| 1 + \frac{z'}{z} \right| + \left| 1 - \frac{z'}{z} \right|.$$

Il suffit donc d'établir :

$$\forall \omega \in \mathbb{C}, \quad 1 + |\omega| \leq |1 + \omega| + |1 - \omega|.$$

Et là, on peut se lancer dans les calculs.

Comme les termes de cette inégalité sont des nombres positifs, il suffit de comparer leurs carrés.

On examine donc le carré de chaque membre.

À gauche, cela vaut $1 + 2|\omega| + |\omega|^2$.

À droite, cela vaut :

$$|1 + \omega|^2 + 2|1 + \omega||1 - \omega| + |1 - \omega|^2 = \left(1 + (\omega + \bar{\omega}) + |\omega|^2\right) + 2|1 - \omega^2| + \left(1 - (\omega + \bar{\omega}) + |\omega|^2\right)$$

$$= 2 + 2|\omega|^2 + 2|1 - \omega^2|$$

Il reste donc à montrer que la différence « droite – gauche » est un réel positif.

Cette différence vaut :

$$1 + |\omega|^2 + 2|1 - \omega^2| - 2|\omega|$$

c'est-à-dire (il fallait le voir!) :

$$(1-|\omega|)^2 + 2|1-\omega^2|$$

qui est une quantité positive!

Youpi!

Étude du cas d'égalité.

Avec la solution 1.

On a égalité dans (\heartsuit) si et seulement si il y a égalité dans (\star) et (\star') . Cela correspond au cas d'égalité dans l'inégalité triangulaire. On a donc, en notant $z_1 = z + z'$ et $z_2 = z - z'$ pour plus de lisibilité :

$$\begin{split} & \text{\'egalit\'e dans} \ (\heartsuit) \quad \Longleftrightarrow \quad \begin{cases} \left(z+z' \in (z-z')\mathbb{R}^+ \quad \text{ou} \quad z-z' \in (z+z')\mathbb{R}^+ \right) \\ & \text{et} \\ \left(z+z' \in (z'-z)\mathbb{R}^+ \quad \text{ou} \quad z'-z \in (z+z')\mathbb{R}^+ \right) \\ & \Leftrightarrow \quad \begin{cases} \left(z_1 \in z_2\mathbb{R}^+ \quad \text{ou} \quad z_2 \in z_1\mathbb{R}^+ \right) \\ & \text{et} \\ \left(z_1 \in z_2\mathbb{R}^- \quad \text{ou} \quad z_2 \in z_1\mathbb{R}^- \right) \\ & \text{attention \mathbb{A} \mathbb{R}^-} \end{cases} \\ & \Leftrightarrow \quad \begin{cases} z_1 \in z_2\mathbb{R}^+ \\ & \text{et} \quad \text{ou} \\ z_1 \in z_2\mathbb{R}^- \end{cases} \quad \begin{cases} z_1 \in z_2\mathbb{R}^+ \\ & \text{et} \quad \text{ou} \\ z_2 \in z_1\mathbb{R}^- \end{cases} \quad \begin{cases} z_2 \in z_1\mathbb{R}^+ \\ & \text{et} \\ z_2 \in z_1\mathbb{R}^- \end{cases} \\ & \Leftrightarrow \quad (z_1 = 0) \quad \text{ou} \quad (z_1 = 0 \text{ et } z_2 = 0) \quad \text{ou} \quad (z_2 = 0 \text{ et } z_1 = 0) \quad \text{ou} \quad (z_2 = 0) \\ & \Leftrightarrow \quad (z_1 = 0) \quad \text{ou} \quad (z_2 = 0) \end{cases} \\ & \Leftrightarrow \quad z + z' = 0 \quad \text{ou} \quad z - z' = 0 \end{split}$$

Avec la solution 4.

- Cas z = 0. Il y a égalité si et seulement si z' = 0.
- Cas $z \neq 0$.

On a (la deuxième équivalence nécessite une petite justification, laquelle?):

$$\begin{array}{lll} \text{\'egalit\'e} & \Longleftrightarrow & (1-|\omega|)^2 \, + \, 2|1-\omega^2| \, = \, 0 \\ & \stackrel{\text{WHY}?}{\Longrightarrow} & 1-|\omega|=0 \quad \text{et} \quad |1-\omega^2|=0 \\ & \Longleftrightarrow & |\omega|=1 \quad \text{et} \quad 1-\omega^2=0 \\ & \Longleftrightarrow & |\omega|=1 \quad \text{et} \quad \omega=\pm 1 \\ & \Longleftrightarrow & \omega=\pm 1 \\ & \Longleftrightarrow & \frac{z}{z'}=\pm 1 \\ & \Longleftrightarrow & z=z' \quad \text{ou} \quad z=-z' \end{array}$$

Dans les deux cas, le cas d'égalité se résume à $\left(z=z'\right)$ ou z=-z'.

Pour tout $a, b \in \mathbb{C}$, on a

$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$

D'où

$$\cos^5 \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^5 = \frac{1}{2^5} \left(e^{i5\theta} + 5e^{3i\theta} + 10e^{i\theta} + 10e^{-i\theta} + 5e^{-3i\theta} + e^{i5\theta}\right).$$

En regroupant les termes symétriques, on obtient :

$$\cos^5 \theta = \frac{1}{32} \left(\left(e^{i5\theta} + e^{-i5\theta} \right) + 5 \left(e^{3i\theta} + e^{-3i\theta} \right) + 10 \left(e^{i\theta} + e^{-i\theta} \right) \right)$$
$$= \frac{1}{16} \left(\cos(5\theta) + 5 \cos(3\theta) + 10 \cos \theta \right).$$

De même, on a :

$$\sin^{5}\theta = \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^{5} = \frac{1}{(2i)^{5}} \left(e^{i5\theta} - 5e^{3i\theta} + 10e^{i\theta} - 10e^{-i\theta} + 5e^{-3i\theta} - e^{i5\theta}\right)$$
$$= \frac{1}{32i} \left(\left(e^{i5\theta} - e^{-i5\theta}\right) - 5\left(e^{3i\theta} - e^{-3i\theta}\right) + 10\left(e^{i\theta} - e^{-i\theta}\right)\right)$$
$$= \frac{1}{16} \left(\sin(5\theta) - 5\sin(3\theta) + 10\sin\theta\right).$$

Cette équation de degré 2 a nécessairement deux solutions (éventuellement confondues) dans \mathbb{C} . Leur somme vaut $1+a+a^2$ et leur produit vaut $a+a^3=a(1+a^2)$. Les solutions sont « donc » a et $1+a^2$.

Solution plus élémentaire, et donc encore plus jolie

Pour tout $z\in\mathbb{C},$ on a (développez le membre droit!) :

$$z^{2} - (1 + a + a^{2})z + a + a^{3} = (z - a)(z - (1 + a^{2}))$$

Ainsi, l'équation $z^2 - (1 + a + a^2)z + a + a^3 = 0$ a pour solution a et $1 + a^2$.

D'après le cours, on a l'équivalence

$$\forall (x,y) \in \mathbb{R}^2, \qquad \left\{ \begin{array}{rcl} x+y & = & 3 \\ xy & = & 2 \end{array} \right. \iff x,\,y \text{ solutions de } t^2-3t+2=0$$

Or l'équation $t^2 - 3t + 2 = 0$ a deux solutions 1 et 2. Donc les couples solutions sont (1, 2) et (2, 1). Il y a donc deux solutions!

Attention à bien annoncer le raisonnement utilisé.

Le mieux est de faire une analyse au brouillon et de coucher sur sa copie la synthèse.

Sur son brouillon (c'est l'analyse). Soit $p, q \in \mathbb{R}$ tels que $z^2 + pz + q = 0$. Alors en appliquant le conjugué, on obtient :

$$\overline{z^2 + pz + q} = \overline{0}$$

Comme p et q sont réels, on obtient :

$$\overline{z}^2 + p\overline{z} + q = 0$$

On a donc

$$\begin{cases} z^2 + pz + q = 0\\ \overline{z}^2 + p\overline{z} + q = 0 \end{cases}$$

Par différence, on a $(z - \overline{z})(z + \overline{z} + p) = 0$.

Comme $z \notin \mathbb{R}$ d'après l'énoncé, on a $p = -(z + \overline{z})$.

En injectant cette information dans la première égalité, on obtient

$$q = -z^{2} - pz$$

$$= -z^{2} + (z + \overline{z})z$$

$$= z\overline{z}$$

Sur sa copie (c'est la synthèse). Montrons qu'il existe $p, q \in \mathbb{R}$ tels que $z^2 + pz + q = 0$. Candidat. Posons $p = -2 \operatorname{Re} z = -(z + \overline{z})$ et $q = |z|^2 = z\overline{z}$.

- On a bien évidemment $p, q \in \mathbb{R}$.
- On a

$$z^2 + pz + q = z^2 - (z + \overline{z})z + z\overline{z} = 0$$

Le produit des solutions de l'équation $z^2 + pz + q = 0$ vaut q. Ainsi $z_1 z_2 = q$. Or $q \neq 0$, donc les complexes z_1 et z_2 sont non nuls.

On pose

$$Z_1 = \frac{1+z_1}{z_2}$$
 et $Z_2 = \frac{1+z_2}{z_1}$.

On a:

$$Z_1 + Z_2 = \frac{1+z_1}{z_2} + \frac{1+z_2}{z_1} = \frac{z_1^2 + z_2^2 + z_1 + z_2}{z_1 z_2} = \frac{(z_1+z_2)^2 - 2z_1 z_2 + z_1 + z_2}{z_1 z_2} \cdot \frac{z_1 z_2 + z_2 + z_1 + z_2}{z_1 z_2}$$

Comme $z_1 + z_2 = -p$ et $z_1 z_2 = q$, on obtient :

$$Z_1 + Z_2 = \frac{p^2 - 2q - p}{q}.$$

On obtient, de même :

$$Z_1Z_2 = \frac{1+z_1+z_2+z_1z_2}{z_1z_2} = \frac{1-p+q}{q} \cdot$$

D'après le cours, \mathbb{Z}_1 et \mathbb{Z}_2 sont les solutions de l'équation :

$$Z^{2} - \frac{p^{2} - 2q - p}{q}Z + \frac{1 - p + q}{q} = 0.$$

— Si $a \in \mathbb{R}$, alors a i est solution de l'équation si et seulement si

$$-a^{3}i - (1-i)a^{2} - ai + 1 - 3i = -a^{2} + 1 + i(-a^{3} + a^{2} - a - 3) = 0,$$

ce qui équivaut à

$$\begin{cases} -a^2 + 1 &= 0 \\ -a^3 + a^2 - a - 3 &= 0. \end{cases}$$

La première équation donne $a=\pm 1$ et seul -1 convient pour la seconde équation. Ainsi -i est solution de l'équation.

— Il existe $(b,c) \in \mathbb{C}^2$ tel que, pour tout $z \in \mathbb{C}$,

$$z^{3} + (1-i)z^{2} - z + 1 - 3i = (z+i)(z^{2} + bz + c).$$

On a $(z+i)(z^2+bz+c)=z^3+(b+i)z^2+(c+ib)z+ic$. Il suffit donc que b et c vérifient $b+i=1-i,\,c+i\,b=-1$ et $i\,c=1-3i,\,c$ 'est-à-dire b=1-2i et c=-3-i.

Ainsi z est solution de l'équation si et seulement si z=-i ou $z^2+(1-2i)z-3-i=0$.

On résout l'équation du second degré. On trouve $\Delta = 9$, donc $z = \frac{-1 + 2i \pm 3}{2}$.

L'ensemble des solutions de l'équation de degré 3 est $\{-i, -2+i, 1+i\}$.

Le discriminant de cette équation du second degré est $\Delta = -4\sin^2\theta = (2i\sin\theta)^2$. Les solutions sont donc égales à

$$\frac{-(-2\cos\theta)\pm2\mathrm{i}\sin\theta}{2}\ =\ \cos\theta\pm\mathrm{i}\sin\theta\ =\ \mathrm{e}^{\pm i\theta}$$

Plus précisément :

- Si $\theta \equiv 0 \ [\pi]$, alors $\Delta = 0$ et l'équation admet une solution double z_0 qui vaut $\begin{cases} z_0 = 1 & \text{si } \theta \equiv 0 \ [2\pi] \\ z_0 = -1 & \text{si } \theta \equiv \pi \ [2\pi] \end{cases}$
- Si $\theta \not\equiv 0$ [π], alors $\Delta \not\equiv 0$ et l'équation admet deux solutions distinctes $e^{i\theta}$ et $e^{-i\theta}$.

Bilan. L'ensemble des solutions de l'équation est donc

$$\begin{cases} 1 \} & \text{si } \theta \equiv 0 \ [2\pi] \\ \{-1\} & \text{si } \theta \equiv \pi \ [2\pi] \\ \left\{ e^{i\theta}, e^{-i\theta} \right\} & \text{si } \theta \not\equiv 0 \ [\pi] \end{cases}$$

On note $\mathcal E$ l'équation donnée.

On pose $Z = z^2$ et on résout $Z^2 - 2\sin\theta Z + \tan^2\theta = 0$.

Cette équation a pour discriminant

$$\Delta = 4(\sin^2\theta - \tan^2\theta) = -\frac{4\sin^4\theta}{\cos^2\theta} = \left(2i\frac{\sin^2\theta}{\cos\theta}\right)^2.$$

Ses solutions sont donc

$$\frac{1}{2} \left(-(-2\sin\theta) \pm 2\mathrm{i} \frac{\sin^2\theta}{\cos\theta} \right)$$

c'est-à-dire

$$\sin \theta \pm i \frac{\sin^2 \theta}{\cos \theta} = \tan \theta (\cos \theta \pm i \sin \theta) = \tan \theta e^{\pm i \theta}$$

Notons Z_1 et Z_2 les deux solutions, qui sont distinctes si et seulement si $\theta \neq 0$:

$$Z_1 = \tan \theta e^{i\theta}$$
 et $Z_2 = \tan \theta e^{-i\theta}$.

— Si $\theta = 0$, alors $Z_1 = Z_2$.

Plus précisément, $Z_1 = Z_2 = 0$.

Donc l'équation $\mathcal E$ a une seule solution 0.

— Si $\theta \neq 0$, alors $Z_1 \neq Z_2$.

Plus précisément, Z_1, Z_2 sont non nuls. Donc l'équation $\mathcal E$ possède 4 solutions.

— si $\theta \in]0, \frac{\pi}{2}[$, alors $\tan \theta > 0$. Donc les formes trigonométriques de Z_1 et Z_2 sont

$$Z_1 = \tan \theta e^{i\theta}$$
 et $Z_2 = \tan \theta e^{-i\theta}$.

Les solutions de $\mathcal E$ sont les racines carrées de Z_1 et Z_2 , à savoir :

$$\sqrt{\tan \theta} e^{i\frac{\theta}{2}}, -\sqrt{\tan \theta} e^{i\frac{\theta}{2}}, \sqrt{\tan \theta} e^{-i\frac{\theta}{2}}, -\sqrt{\tan \theta} e^{-i\frac{\theta}{2}}.$$

— si $\theta \in]-\frac{\pi}{2},0[$, alors $\tan \theta < 0$.

Donc les formes trigonométriques de Z_1 et Z_2 sont

$$Z_1 = (-\tan \theta) e^{i(\theta + \pi)}$$
 et $Z_2 = (-\tan \theta) e^{-i(\theta + \pi)}$.

Les solutions de \mathcal{E} sont les racines carrées de Z_1 et Z_2 , à savoir :

$$\sqrt{-\tan\theta}\,\mathrm{e}^{\mathrm{i}\frac{\theta+\pi}{2}},\quad -\sqrt{-\tan\theta}\,\mathrm{e}^{\mathrm{i}\frac{\theta+\pi}{2}},\quad \sqrt{-\tan\theta}\,\mathrm{e}^{-\mathrm{i}\frac{\theta+\pi}{2}},\quad -\sqrt{-\tan\theta}\,\mathrm{e}^{-\mathrm{i}\frac{\theta+\pi}{2}}.$$

$$(a+bj+cj^{2})(a+bj^{2}+cj) = \begin{pmatrix} a^{2} & + & ab j^{2} & + & ac j \\ + & ab j & + & b^{2} & + & bc j^{2} \\ + & ac j^{2} & + & bc j & + & c^{2} \end{pmatrix}$$
$$= a^{2} + b^{2} + c^{2} + (2ab + 2bc + 2ac) (j + j^{2})$$
$$= a^{2} + b^{2} + c^{2} - ab - ac - bc.$$

On en déduit

$$(a+b+c)(a+bj+cj^2)(a+bj^2+cj) = (a+b+c)(a^2+b^2+c^2-ab-ac-bc)$$

$$a^3 + ab^2 + ac^2 - a^2b - a^2c - abc$$

$$= + a^2b + b^3 + bc^2 - ab^2 - abc - b^2c$$

$$+ a^2c + b^2c + c^3 - abc - ac^2 - bc^2$$

$$= a^3+b^3+c^3-3abc.$$

1. Première solution maladroite. On a :

$$\begin{array}{rcl} \overline{S} & = & \overline{z} + \overline{z}^2 + \overline{z}^4 \\ & = & \mathrm{e}^{-i\frac{2\pi}{7}} + \mathrm{e}^{-i\frac{4\pi}{7}} + \mathrm{e}^{-i\frac{8\pi}{7}} \\ & = & \mathrm{e}^{i\frac{12\pi}{7}} + \mathrm{e}^{i\frac{10\pi}{7}} + \mathrm{e}^{i\frac{6\pi}{7}} \\ & = & z^6 + z^5 + z^3 \\ & = & T \end{array}$$

Deuxième solution, plus élégante!

On utilise que $z \in \mathbb{U}$ donc $\overline{z} = \frac{1}{z}$.

Et on utilise que $z \in \mathbb{U}_7$, donc $\frac{1}{z} = z^6$ (WHY?). Dit autrement, on peut faire des calculs de puissances sympathiques (il suffit de raisonner modulo 7 sur les exposants), ainsi $z^{-1} = z^6$, et $z^{-2} = z^5$ et $z^{-4} = z^3$.

On a:

$$\overline{S} = \overline{z} + \overline{z}^2 + \overline{z}^4$$

$$= \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^4}$$

$$= z^6 + z^5 + z^3$$

$$= T$$

Fin de la question. On a

$$\operatorname{Im} S = \sin \frac{2\pi}{7} + \sin \frac{4\pi}{7} + \sin \frac{8\pi}{7}$$

$$= \sin \frac{2\pi}{7} + \sin \frac{3\pi}{7} - \sin \frac{\pi}{7}$$

$$= \underbrace{\left(\sin \frac{2\pi}{7} - \sin \frac{\pi}{7}\right)}_{\geqslant 0} + \underbrace{\sin \frac{3\pi}{7}}_{>0},$$

$$> 0$$

2. On a

$$S + T = \sum_{k=0}^{6} z^k - 1$$

Comme $z \neq 1$, on a:

$$S + T \ = \ \frac{1 - z^7}{1 - z} \ - \ 1 \ \stackrel{\text{WHY}}{=} \ -1.$$

En utilisant que $z^7 = 1$, on a :

$$ST = (z + z^{2} + z^{4})(z^{3} + z^{5} + z^{6})$$

$$= z^{4} + z^{6} + z^{7} + z^{5} + z^{7} + z^{8} + z^{7} + z^{9} + z^{10}$$

$$= z^{4} + z^{6} + 1 + z^{5} + 1 + z + 1 + z^{2} + z^{3}$$

$$= S + T + 3$$

$$= 2.$$

On a donc

$$\begin{cases} S + T = -1 \\ ST = 2 \end{cases}$$

Ainsi S et T sont les solutions de l'équation $x^2+x+2=0$ dont les solutions sont $\frac{-1\pm \mathrm{i}\,\sqrt{7}}{2}$. Comme $\mathrm{Im}\,S>0$, on a :

$$S = \frac{-1 + i\sqrt{7}}{2} \quad \text{et} \quad T = \frac{-1 - i\sqrt{7}}{2}.$$

- Supposons $\mathbb{U}_n \subset \mathbb{U}_m$. Alors, en particulier $e^{\frac{2i\pi}{n}} \in \mathbb{U}_m$, donc $\left(e^{\frac{2i\pi}{n}}\right)^m = e^{\frac{2mi\pi}{n}} = 1$. On en déduit que $\frac{2m\pi}{n}$ est un multiple de 2π donc n divise m.
- Supposons que n divise m. Alors il existe $p \in \mathbb{N}^*$ tel que m = np. Soit $z \in \mathbb{U}_n$. On a $z^n = 1$. On en déduit $z^m = (z^n)^p = 1$, donc $z \in \mathbb{U}_m$. On a donc $\mathbb{U}_n \subset \mathbb{U}_m$.

Solution (très) astucieuse, donnée par une élève en khôlle.

En élevant au carré l'hypothèse, on a :

$$\left(e^{ix} + e^{iy} + e^{iz}\right)^2 = 0.$$

On obtient donc

(*)
$$e^{i2x} + e^{i2y} + e^{i2z} + 2\left(e^{i(x+y)} + e^{i(y+z)} + e^{i(x+z)}\right) = 0$$

Or, en multipliant l'hypothèse par $e^{-i(x+y+z)}$, on a :

$$e^{-i(y+z)} + e^{-i(x+z)} + e^{-i(x+y)} = 0$$

Et en appliquant le conjugué, on a

$$e^{i(y+z)} + e^{i(x+z)} + e^{i(x+y)} = 0$$

En réutilisant (\star) , on obtient

$$e^{i2x} + e^{i2y} + e^{i2z} = 0$$

Soit $z \in \mathbb{C}$.

D'après le cours, on a

$$\operatorname{Re}(z) \leqslant |z|$$

Par croissance de la fonction exponentielle sur \mathbb{R} , on a

$$e^{\operatorname{Re} z} \leqslant e^{|z|}$$

Or $|{\rm e}^z|=e^{{\rm Re}\,z},$ d'où le résultat.

Cas d'égalité.

On a égalité si et seulement si Re(z) = |z|, et donc si et seulement si $z \in \mathbb{R}^+$.

Le triangle équilatéral ABC est dit direct (resp. indirect) si l'angle $(\overrightarrow{AB}, \overrightarrow{AC})$ a pour mesure $\frac{\pi}{3}$ (resp. $-\frac{\pi}{3}$).

Le triangle ABC est équilatéral si et seulement si, il est équilatéral direct ou équilatéral indirect.

— Le triangle ABC est équilatéral direct si et seulement si C est l'image de B par la rotation de centre A et d'angle $\frac{\pi}{3}$, ce qui s'écrit :

$$(c-a) = e^{i\frac{\pi}{3}} (b-a) = -j^2 (b-a)$$

D'où $c = a - j^2(b - a)$. On a donc

$$aj + bj^{2} + c = aj + bj^{2} + (a - j^{2}(b - a))$$

= $a(1 + j + j^{2})$
= 0

— De même ABC est équilatéral indirect si et seulement si

$$(c-a) = e^{-i\frac{\pi}{3}}(b-a) = -j(b-a)$$

De la même façon, on trouve $aj^2 + bj + c = 0$.

Le triangle ABC est équilatéral si et seulement si

$$aj + bj^{2} + c = 0$$
 ou $aj^{2} + bj + c = 0$

c'est-à-dire si et seulement si

$$(aj + bj^{2} + c) (aj^{2} + bj + c) = 0.$$

Après simplification, en utilisant $1 + j + j^2 = 0$ et $j^3 = 1$, on obtient la condition

$$a^{2} + b^{2} + c^{2} - (bc + ac + ab) = 0$$

1. Soit $z \in \mathbb{C} \setminus \{a\}$.

D'une part, on a

$$\frac{z-b}{z-a} \in i\mathbb{R} \iff \frac{\overline{z}-\overline{b}}{\overline{z}-\overline{a}} = -\frac{z-b}{z-a}$$

$$\iff (\overline{z}-\overline{b})(z-a) = -(\overline{z}-\overline{a})(z-b)$$

$$\iff 2z\overline{z} - z(\overline{a}+\overline{b}) - \overline{z}(a+b) + (\overline{a}\,b-a\,\overline{b}) = 0$$

$$\iff z\overline{z} - z\overline{\omega} - \overline{z}\omega + \frac{1}{2}(\overline{a}\,b-a\,\overline{b}) = 0.$$

D'autre part, on a :

$$|z - \omega|^2 = R^2 \iff (z - \omega)(\overline{z} - \overline{\omega}) - \frac{|b - a|^2}{4} = 0$$
$$\iff z\overline{z} - z\overline{\omega} - \overline{z}\omega + \omega\overline{\omega} - \frac{|b - a|^2}{4} = 0$$

Reste à montrer que $\omega \, \overline{\omega} - \frac{|b-a|^2}{4} = \frac{1}{2} (\overline{a} \, b - a \, \overline{b}).$

On a

$$\omega \, \overline{\omega} - \frac{|b-a|^2}{4} \ = \ \frac{a+b}{2} \frac{\overline{a} + \overline{b}}{2} - \frac{1}{4} (b-a) (\overline{b} - \overline{a}) \ = \ \frac{1}{2} (\overline{a} \, b - a \, \overline{b}).$$

- 2. Raisonnons par disjonction de cas.
 - Cas $M \neq A$. On a l'équivalence :

$$\overrightarrow{MA} \perp \overrightarrow{MB} \iff \frac{z-b}{z-a} \in i\mathbb{R}$$

$$\iff |z-\omega|^2 = R^2$$

$$\iff M\Omega^2 = R^2$$

$$\iff M \text{ appartient au cercle de centre } \Omega \text{ de rayon } R$$

$$\iff M \text{ appartient au cercle de diamètre } [AB]$$

— Cas
$$M = A$$

L'assertion $\overrightarrow{MA} \perp \overrightarrow{MB}$ devient $\overrightarrow{0} \perp \overrightarrow{MB}$, qui est toujours vraie.

Et l'autre assertion, à savoir « M appartient au cercle de diamètre [AB] », est également toujours vraie lorsque M=A.

Comme « le vrai » est équivalent « au vrai », l'équivalence est également vérifiée dans ce cas.

Bilan. On a donc montré l'équivalence

$$\overrightarrow{MA} \perp \overrightarrow{MB} \iff M$$
 appartient au cercle de diamètre $[AB]$

On note M_1, M_2, M_3 les points d'affixes z, z^2, z^3 .

- 1. Si z=1 ou z=0, les points sont confondus donc alignés ; sinon, ils sont alignés si et seulement si $\frac{z^3-z}{z^2-z}=z+1$ est réel, ce qui équivaut à z réel. Comme 0 et 1 sont réels, on conclut que les trois points sont alignés si et seulement si z est réel.
- 2. On suppose que les points sont distincts, c'est-à-dire que $z \in \mathbb{C} \setminus \{-1,0,1\}$.
 - Le triangle $M_1M_2M_3$ est rectangle en M_1 si et seulement si $\frac{z^3-z}{z^2-z}=z+1$ est imaginaire pur. Cela équivaut à Re(z)=-1, donc au fait que M_1 appartient à la droite d_1 d'équation x=-1.
 - De même, $M_1M_2M_3$ est rectangle en M_2 si et seulement si $\frac{z^3-z^2}{z-z^2}=-z$ est imaginaire pur. Cela équivaut à Re(z)=0, donc au fait que M_1 appartient à la droite d_2 d'équation x=0.
 - De même, $M_1M_2M_3$ est rectangle en M_3 si et seulement si $\frac{z-z^3}{z^2-z^3}=1+\frac{1}{z}$ est imaginaire pur.

En notant z = x + iy, avec x et y réels, on a les équivalences :

$$1 + \frac{1}{z} \in i\mathbb{R} \iff 1 + \frac{1}{\overline{z}} = -1 - \frac{1}{z}$$

$$\iff 2z\overline{z} = -(z + \overline{z})$$

$$\iff x^2 + y^2 = -x$$

$$\iff \left(x + \frac{1}{2}\right)^2 + y^2 = \frac{1}{4}.$$

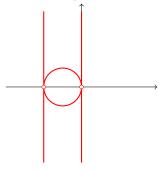
On reconnaît l'équation du cercle \mathcal{C} de centre Ω , d'affixe $-\frac{1}{2}$ et de rayon $\frac{1}{2}$ (ce cercle est tangent aux droites d_1 et d_2).

La condition équivaut donc au fait que M_1 appartient au cercle \mathcal{C} .

Finalement le triangle $M_1M_2M_3$ est rectangle si et seulement si M_1 appartient à

$$d_1 \cup d_2 \cup \mathcal{C} \setminus \{O, A\}$$

où A est le point d'affixe -1.

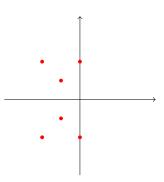


3. En plus d'être imaginaire pur, il faut que dans chacun des cas précédents, le rapport soit de module 1.

Ce qui donne, dans le premier cas $z+1=\pm i$, dans le second cas $z=\pm i$ et dans le troisième cas $1+\frac{1}{z}=\pm i$.

Finalement le triangle $M_1M_2M_3$ est rectangle et isocèle si et seulement si z appartient à :

$$\{-1-i, -1+i, -i, i, \frac{1}{2}(-1-i), \frac{1}{2}(-1+i)\}.$$



Montrons que le point H d'affixe h = a + b + c est l'orthocentre du triangle ABC.

Il s'agit de démontrer que
$$\begin{cases} \overrightarrow{AH} \perp \overrightarrow{BC} \\ \overrightarrow{BH} \perp \overrightarrow{CA} \\ \overrightarrow{CH} \perp \overrightarrow{AB} \end{cases}$$

Montrons la première relation d'orthogonalité.

Les deux autres relations sont obtenues par permutations circulaires et s'en déduisent donc par symétrie.

On a l'équivalence :

$$\overrightarrow{AH} \perp \overrightarrow{BC} \iff \frac{h-a}{c-b} \in \mathrm{i}\mathbb{R} \stackrel{h=a+b+c}{\Longleftrightarrow} \frac{c+b}{c-b} \in \mathrm{i}\mathbb{R}.$$

Il s'agit donc de montrer que $\frac{c+b}{c-b}\in i\mathbb{R}.$ Allons-y. Comme b et $c\in\mathbb{U},$ on a :

$$\overline{\left(\frac{c+b}{c-b}\right)} \;=\; \frac{\overline{c}+\overline{b}}{\overline{c}-\overline{b}} \;=\; \frac{\frac{1}{c}+\frac{1}{b}}{\frac{1}{c}-\frac{1}{b}} \;=\; \frac{b+c}{b-c} \;=\; -\frac{c+b}{c-b}\cdot$$

Ainsi $\frac{c+b}{c-b} \in i\mathbb{R}$.

Donc $\overrightarrow{AH} \perp \overrightarrow{BC}$.

1. W_n est le périmètre du polygone dont les sommets sont les points d'affixes $e^{i\frac{2k\pi}{n}}$ pour $k \in [0, n-1]$. Ce polygone est inscrit dans le cercle trigonométrique.

Quand n tend vers l'infini, ce polygone se rapproche du cercle.

Ainsi, on conjecture que la suite (W_n) converge et a pour limite 2π .

2. $W_3 = |1 - j| + |j - j^2| + |j^2 - 1|$ est exactement le périmètre du triangle (équilatéral) dont les sommets sont les points d'affixes $1, j, j^2$.

Sur un dessin, il est facile de voir que $|j - j^2| = \sqrt{3}$.

Donc $W_3 = 3\sqrt{3}$.

3. Pour tout $k \in [\![0,n-1]\!],$ on a (en factorisant) :

$$\left| e^{i\frac{2k\pi}{n}} - e^{i\frac{2(k+1)\pi}{n}} \right| = \left| e^{i\frac{2k\pi}{n}} \left(1 - e^{i\frac{2\pi}{n}} \right) \right| = \left| 1 - e^{i\frac{2\pi}{n}} \right|$$

d'où

$$W_n = \sum_{k=0}^{n-1} \left| e^{i\frac{2k\pi}{n}} - e^{i\frac{2(k+1)\pi}{n}} \right| = \sum_{k=0}^{n-1} \left| 1 - e^{i\frac{2\pi}{n}} \right| = n \left| 1 - e^{i\frac{2\pi}{n}} \right| \stackrel{\text{WHY}}{=} 2n \sin\left(\frac{\pi}{n}\right)$$

4. Par un jeu d'écriture, on obtient :

$$W_n = 2\pi \times \frac{\sin\left(\frac{\pi}{n}\right)}{\frac{\pi}{n}}$$

On a

$$\begin{cases} \frac{\pi}{n} \xrightarrow[n \to +\infty]{} 0 \\ \frac{\sin(t)}{t} \xrightarrow[t \to 0]{} 1 \end{cases}$$
 d'où, par composition de limites,
$$\frac{\sin\left(\frac{\pi}{n}\right)}{\frac{\pi}{n}} \xrightarrow[n \to +\infty]{} 1$$

D'où

$$W_n \xrightarrow[n \to +\infty]{} 2\pi$$

- 1. On a $j = e^{\frac{2i\pi}{3}}$. Le polynôme $X^2 + X + 1$ admet j pour racine.
- 2. Comme U et V sont les solutions de (E_2) , on a $(Z-U)(Z-V) = Z^2 + qZ \frac{p^3}{27}$. D'où $U+V \stackrel{\clubsuit}{=} -q$ et $UV \stackrel{\clubsuit}{=} -\frac{p^3}{27}$.
- 3. Raisonnons par l'absurde. Si u=0 alors $u^3=0$ donc U=0, donc p=0 (d'après \spadesuit), ce qui n'est pas d'après l'énoncé. Ainsi, $u\neq 0$.
- 4. Le complexe v vérifie par définition l'égalité 3uv=-p. En élevant au cube, on obtient $27u^3v^3=-p^3$, d'où (d'après \spadesuit) $u^3v^3=UV$. Or $u^3=U\neq 0$, donc $v^3=V$.
- 5. Remarquons que $u^3 + v^3 = -q$ (d'après \clubsuit) et rappelons que 3uv = -p (cf. la définition de v). Ainsi :

$$(u+v)^3 + p(u+v) + q = u^3 + 3u^2v + 3uv^2 + v^3 + p(u+v) + q = \underbrace{(u^3 + v^3)}_{-q} + \underbrace{3uv}_{-p}(u+v) + p(u+v) + q = 0$$

6. Montrer que $ju + j^2v$ et $j^2u + jv$ sont aussi des solutions de l'équation (E_1) .

1ère solution (par le calcul) Avant de commencer, notons que $ju + j^2v = j(u + jv)$ et que $j^3 = 1$. Ainsi, il suffit de reprendre le caclul précédent et de remplacer v par jv.

$$(j(u+jv))^3 + pj(u+jv) + q = \underbrace{(u^3+v^3)}_{-q} + \underbrace{3ujv}_{-pj}(u+jv) + pj(u+jv) + q = 0$$

On montrer de même que $j^2u + jv$ est solution.

2ème solution (moins calculatoire et plus conceptuelle?)

Nous venons de montrer que

si
$$(u, v)$$
 vérifie
$$\begin{cases} u^3 = U \\ v = \frac{-p}{3u} \end{cases}$$
 alors $u + v$ est solution de (E_1)

Fixons donc un tel couple (u,v) (qui existe d'après les questions précédentes).

Alors le couple (ju, j^2v) vérifie les 2 égalités de l'accolade ci-dessus. En effet, on a :

$$\begin{cases} (ju)^3 = U & (\operatorname{car} j^3 = 1 \text{ et } u^3 = U) \\ j^2v = \frac{-p}{3(ju)} & (\operatorname{car} 1/j = j^2 \text{ et } v = \frac{-p}{3u}) \end{cases}$$

Donc, d'après l'implication ci-dessus, $(ju) + (j^2v)$ est solution de (E_1) .

7. On a $ju + j^2v = ju + (-1 - j)v = -v + j(u - v)$. On écrit $j = \frac{-1}{2} + i\frac{\sqrt{3}}{2}$.

Ainsi $\operatorname{Im}(ju+j^2v) = \frac{\sqrt{3}}{2}(u-v) \neq 0 \text{ car } u \neq v. \text{ Donc } ju+j^2v \notin \mathbb{R}.$

Comme $\overline{ju+j^2v}=j^2u+jv$, on obtient que $j^2u+jv\notin\mathbb{R}$ et que $ju+j^2v\neq j^2u+jv$

8. Supposons $4p^3 + 27q^2 > 0$.

Alors l'équation (E_2) admet deux solutions **réelles distinctes** U et V.

Il existe alors une unique racine cubique **réelle** u de U, c'est-à-dire telle que $u^3 = U$.

Choisissons également l'unique réel v tel que $v^3 = V$.

On sait alors que $z_0 = u + v$, $z_1 = ju + j^2v$ et $z_2 = j^2u + jv$ sont des solutions de (E_1) .

Comme $U \neq V$, on a $u \neq v$, donc (d'après la question précédente) $z_1, z_2 \notin \mathbb{R}$ et $z_1 \neq z_2$.

Ainsi z_0, z_1, z_2 sont exactement les solutions de (E_1) (car l'équation est de degré 3) et seule z_0 est réelle.

Par conséquent (E_1) admet bien une seule racine réelle.

9. Montrer que l'équation $z^3 - z - 1 = 0$ admet une unique solution réelle que l'on déterminera à l'aide de radicaux (racine carrée, racine cubique etc.).

Ici p = -1 et q = -1. Comme $4p^3 - 27q^2 > 0$, l'équation admet une unique solution réelle (à savoir u + v, où $u = \sqrt[3]{U}$ et $v = \sqrt[3]{V}$ avec U et V les deux solutions réelles disctinctes de (E_2) .

Les solutions de (E_2) sont $U, V = \frac{1 \pm \sqrt{\frac{23}{27}}}{2}$.

Donc l'unique solution réelle de
$$(E_1)$$
 est $\sqrt[3]{\frac{1+\sqrt{\frac{23}{27}}}{2}} + \sqrt[3]{\frac{1-\sqrt{\frac{23}{27}}}{2}}$

Notons $J = \left\{ z \in \mathbb{C}^* \mid z + \frac{1}{z} \in \mathbb{R} \right\}$ et montrons $J = \mathbb{U} \cup \mathbb{R}^*$ par double inclusion.

Sens direct. Soit $z \in J$. On note $r = z + \frac{1}{z}$, de telle sorte que $r \in \mathbb{R}$.

En multipliant par z, on obtient $z^2 + 1 = rz$, c'est-à-dire que z est solution de l'équation du second degré à coefficients réels (d'inconnue x)

$$x^2 - rx + 1 = 0. \tag{4}$$

Le discriminant de (\maltese) est $\Delta = r^2 - 4$. On distingue alors deux cas.

— Si $\Delta \geqslant 0$, (\maltese) a deux solutions réelles (ou une solution réelle double). Le produit de ces deux solutions (ou le carré de la solution double) valant 1, lesdites solutions sont non nulles.

Puisque z est l'une d'entre elles, on a $z \in \mathbb{R}^*$.

— Si $\Delta < 0$, (\maltese) a deux solutions complexes non réelles, et on sait qu'elles sont conjuguées. Notons α l'une des deux (de telle sorte que l'autre est $\overline{\alpha}$).

Le produit des deux solutions vaut alors $1 = \alpha \overline{\alpha} = |\alpha|^2$. Cela prouve que $\alpha \in \mathbb{U}$.

Que l'on ait $z = \alpha$ ou $z = \overline{\alpha}$, on en déduit dans tous les cas $z \in \mathbb{U}$.

Dans les deux cas, on a $z \in \mathbb{U} \cup \mathbb{R}^*$.

Sens réciproque. Réciproquement, soit $z \in \mathbb{U} \cup \mathbb{R}^*$. On distingue alors deux cas.

— Si $z \in \mathbb{U}$, on a évidemment $z \in \mathbb{C}^*$ et d'autre part $\frac{1}{z} = \overline{z}$, donc

$$z + \frac{1}{z} = z + \overline{z} = 2 \operatorname{Re} z \in \mathbb{R}.$$

— Si $z \in \mathbb{R}^*$, on a (encore plus évidemment) $z \in \mathbb{R}^*$ et $z + \frac{1}{z} \in \mathbb{R}$.

Dans les deux cas, on a donc montré $z \in J$.

Si (n,m) est solution de l'équation, la considération des modules donne $2^m = \sqrt{2}^n$, donc n = 2m. Ensuite, si n = 2m, l'équation devient

$$2^{m}\zeta_{6}^{m} = \sqrt{2}^{2m}\overline{\zeta_{8}}^{2m} \iff \zeta_{6}^{m}\zeta_{8}^{2m} = 1$$

$$\iff (\zeta_{6}\zeta_{4})^{m} = 1$$

$$\iff (\zeta_{12}^{2}\zeta_{12}^{3})^{m} = 1$$

$$\iff \zeta_{12}^{5m} = 1$$

$$\iff 12|5m$$

$$\iff 12|m,$$

donc la solution minimale est (24, 12).

Montrons que la condition

$$(L_{\alpha})$$
 $\forall (x,y) \in \mathbb{R}^2, \quad x + \alpha y = 0 \implies x = y = 0.$

est équivalente au fait que $\alpha \in \mathbb{C} \setminus \mathbb{R}$.

Sens direct. Supposons $\alpha \in \mathbb{C} \setminus \mathbb{R}$. Notons $r = \operatorname{Re} \alpha$ et $s = \operatorname{Im} \alpha \neq 0$.

Montrons l'implication.

Soit $(x,y) \in \mathbb{R}^2$ tels que $x + \alpha y = 0$. Montrons x = y = 0. On a

$$x+\alpha y=0$$
 donc $x+(r+is)y=0$
donc $(x+ry)+isy=0$
donc $x+ry=0$ et $sy=0$
donc $x+ry=0$ et $y=0$ car $s\neq 0$

x = 0 et y = 0.

Sens réciproque. Réciproquement, montrons que (L_{α}) implique $\alpha \in \mathbb{C} \setminus \mathbb{R}$.

donc

Montrons plutôt la contraposée, c'est-à-dire que $\alpha \in \mathbb{R}$ entraîne la négation de (L_{α}) , à savoir

$$\exists (x,y) \in \mathbb{R}^2, \quad x + \alpha y = 0 \quad \text{et} \quad (x,y) \neq (0,0)$$

Supposons donc $\alpha \in \mathbb{R}$.

Posons $x = \alpha$ et y = -1.

Par hypothèse sur α , on a $(x, y) \in \mathbb{R}^2$.

On a évidemment $x + \alpha y = 0$.

Et le couple (x, y) n'est pas le couple nul.

1. Les seules obstructions à ce que l'expression sont bien définies sont la racine carrée (il faut que son argument soit un réel positif) et le quotient (il faut que le dénominateur soit non nul).

Mises ensemble, on obtient que

L'inégalité $|\operatorname{Re} z| \leq |z|$ entraı̂ne que $\operatorname{Re} z \in [-|z|,|z|]$ et donc que $\operatorname{Re} z + |z|$ appartient à \mathbb{R}_{+}^{*} si et seulement si $\operatorname{Re} z \neq -|z|$.

Or, l'égalité Re z=-|z| entraı̂ne que $(\operatorname{Re} z)^2=|z|^2=(\operatorname{Re} z)^2+(\operatorname{Im} z)^2$, et donc que $\operatorname{Im} z=0$. Par ailleurs, $\operatorname{Re} z=-|z|\leqslant 0$. On a donc montré que le complémentaire de $\mathscr D$ est

$$\mathbb{C}\setminus\mathscr{D}=$$

$$\subset\mathbb{R}_{-}$$

L'autre inclusion étant immédiate, on a $\mathbb{C} \setminus \mathscr{D} = \mathbb{R}_{-}$ et donc

$$\mathscr{D} = \mathbb{C} \setminus \mathbb{R}_{-}$$
.

2. Faisons le calcul : soit $z \in \mathcal{D}$, que l'on écrit sous forme algébrique z = a + ib. On note également $\rho = |z| = \sqrt{a^2 + b^2}$. On a alors

$$f(z) = \frac{a+ib+\rho}{\sqrt{2a+2\rho}}$$

$$= \frac{1}{\sqrt{2}} \frac{a+\rho}{\sqrt{a+\rho}} + \frac{i}{\sqrt{2}} \frac{b}{\sqrt{a+\rho}}$$

$$= \frac{\sqrt{a+\rho}}{\sqrt{2}} + \frac{i}{\sqrt{2}} \frac{b}{\sqrt{a+\rho}}$$

$$donc \quad f(z)^2 = \frac{1}{2} \left[\left(\sqrt{a+\rho} \right)^2 - \left(\frac{b}{\sqrt{a+\rho}} \right)^2 \right] + i \left[\sqrt{a+\rho} \frac{b}{\sqrt{a+\rho}} \right]$$

$$= \frac{1}{2} \left[a+\rho - \frac{b^2}{a+\rho} \right] + ib$$

$$= \frac{1}{2} \frac{(a+\rho)^2 - b^2}{a+\rho} + ib$$

$$= \frac{1}{2} \frac{a^2 + 2a\rho + \rho^2 - b^2}{a+\rho} + ib$$

$$= \frac{1}{2} \frac{2a^2 + 2a\rho}{a+\rho} + ib$$

$$= a+ib$$

$$= z.$$

On a donc montré

$$\forall z \in \mathbb{C} \setminus \mathbb{R}_-, f(z)^2 = z.$$

3. Comme $-9 + 40i \in \mathbb{C} \setminus \mathbb{R}_{-}$, le nombre f(-9 + 40i) va être, d'après ce qui précède, une des deux racines carrées de -9 + 40i, l'autre en étant automatiquement l'opposé. Après calcul, on trouve f(-9 + 40i) = 4 + 5i donc les deux racines carrées de -9 + 40i sont 4 + 5i et -4 - 5i.

Nous allons raisonner à l'aide des formes exponentielles.

Cela nécessite de traiter 0 à part, mais on remarque immédiatement que 0 est bien solution de l'équation.

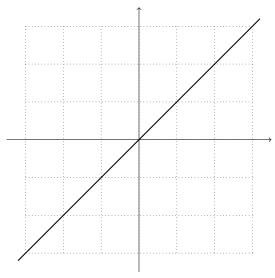
- Remarquons qu'un nombre $\omega \in \mathbb{C}^*$ vérifie $\text{Re}(\omega) = \text{Im}(\omega)$ si et seulement si $\arg \omega \equiv \frac{\pi}{4} \mod \pi$. Montrons-le.
 - En effet, soit $\omega \in \mathbb{C}^*$ tel que $\text{Re}(\omega) = \text{Im}(\omega)$. On peut trouver $\lambda \in \mathbb{R}$ tel que $\omega = \lambda + \lambda i = \lambda(1+i)$. Comme $\omega \neq 0$, on a même $\lambda \neq 0$.
 - i Si $\lambda > 0$, la forme exponentielle de $\lambda(1+i)$ est $\sqrt{2}\lambda e^{i\pi/4}$, donc $\frac{\pi}{4}$ est un argument de ω .
 - ii De même, si $\lambda < 0$, la forme exponentielle de $\lambda(1+i)$ est $\sqrt{2} |\lambda| e^{i\pi + i\pi/4} = \sqrt{2} |\lambda| e^{i5\pi/4}$, donc $\frac{5\pi}{4}$ est un argument de ω .

Dans tous les cas, on a donc $\arg \omega \equiv \frac{\pi}{4} \mod \pi$.

- Réciproquement, supposons $\arg \omega \equiv \frac{\pi}{4} \mod \pi$. On a donc deux possibilités modulo 2π , à savoir $\arg(\omega) \equiv \frac{\pi}{4} \mod 2\pi$ ou $\arg(\omega) \equiv \frac{5\pi}{4} \mod 2\pi$.
 - i Dans le premier cas, on a $\omega = |\omega| \, e^{i\pi/4} = |\omega| \, \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$.
 - ii Dans le second, on a $\omega = |\omega| e^{i5\pi/4} = -|\omega| \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$.

Dans tous les cas, on a bien $Re(\omega) = Im(\omega)$.

Cela achève la preuve de la remarque.



L'ensemble des $\omega \in \mathbb{C}$ tels que $\text{Re}(\omega) = \text{Im}(\omega)$ est la première bissectrice du plan.

ullet On peut alors conclure par équivalences. Soit $z\in\mathbb{C}^*.$ On a la chaîne d'équivalences

$$\operatorname{Re}(z^3) = \operatorname{Im}(z^3) \iff \operatorname{arg}(z^3) \equiv \frac{\pi}{4} \bmod \pi$$

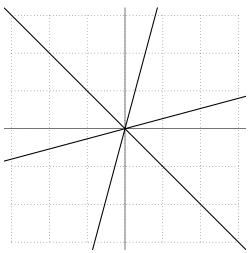
$$\iff 3\operatorname{arg}(z) \equiv \frac{\pi}{4} \bmod \pi$$

$$\iff \operatorname{arg}(z) \equiv \frac{\pi}{12} \bmod \pi/3.$$

Cette condition est satisfaisante, mais pour pouvoir réaliser un dessin, il est bon de remarquer que cette dernière condition est équivalente au fait que l'un des six nombres

$$\frac{\pi}{12},\ \frac{5\pi}{12},\ \frac{9\pi}{12}=\frac{3\pi}{4},\ \frac{13\pi}{12},\ \frac{17\pi}{12},\ \frac{21\pi}{12}=\frac{7\pi}{4}$$

est un argument de z.



L'ensemble des $z\in\mathbb{C}$ tels que $\mathrm{Re}(z^3)=\mathrm{Im}(z^3)$ est la réunion de trois droites concourantes.

Notons z_1 et z_2 les deux racines de $X^2 - pX + q^2$ (ou, éventuellement, la racine double comptée deux fois). D'après les relations coefficients-racines, on a

$$p = z_1 + z_2$$
 et $q^2 = z_1 z_2$.

En particulier, l'hypothèse $q \neq 0$ entraı̂ne $z_1, z_2 \neq 0$. On a alors

$$\begin{aligned} \frac{p^2}{q^2} &= \frac{(z_1 + z_2)^2}{z_1 z_2} \\ &= \frac{z_1^2 + 2z_1 z_2 + z_2^2}{z_1 z_2} \\ &= \frac{z_1}{z_2} + 2 + \frac{z_2}{z_1} \\ &= u + \frac{1}{u} + 2, \end{aligned}$$

où l'on a noté $u=\frac{z_1}{z_2}$. Comme $|z_1|=|z_2|$, on a $u\in\mathbb{U}$. On en déduit que $\frac{1}{u}=\overline{u}$ et on obtient la nouvelle expression

$$\frac{p^2}{q^2} = u + \overline{u} + 2$$
$$= 2\operatorname{Re}(u) + 2.$$

Cela montre que $\frac{p^2}{q^2} \in \mathbb{R}$ et même, comme $\mathrm{Re}(u) \in [-1,1]$ (car on a $|\mathrm{Re}(u)| \leqslant |u| = 1$) , que $\frac{p^2}{q^2} \in [0,4].$ On en déduit que $\frac{p}{q}$ est un nombre réel, et même que

$$\frac{p}{q} = \pm \sqrt{\frac{p^2}{q^2}} \in [-2, 2].$$